Clinical Trial Results for Cerebral Arteriovenous Malformations

3 Clinical Trials for Cerebral Arteriovenous Malformations

Focus your search

RECRUITING
Treatment of Brain AVMs (TOBAS) Study
Description

The objectives of this study and registry are to offer the best management possible for patients with brain arteriovenous malformations (AVMs) (ruptured or unruptured) in terms of long-term outcomes, despite the presence of uncertainty. Management may include interventional therapy (with endovascular procedures, neurosurgery, or radiotherapy, alone or in combination) or conservative management. The trial has been designed to test a) whether medical management or interventional therapy will reduce the risk of death or debilitating stroke (due to hemorrhage or infarction) by an absolute magnitude of about 15% (over 10 years) for unruptured AVMs (from 30% to 15%); and, b) to test if endovascular treatment can improve the safety and efficacy of surgery or radiation therapy by at least 10% (80% to 90%). As for the nested trial on the role of embolization in the treatment of Brain AVMs by other means: the pre-surgical or pre-radiosurgery embolization of cerebral AVMs can decrease the number of treatment failures from 20% to 10%. In addition,embolization of cerebral AVMs can be accomplished with an acceptable risk, defined as permanent disabling neurological complications of 8%.

RECRUITING
Comprehensive HHT Outcomes Registry of the United States (CHORUS)
Description

The Comprehensive HHT Outcomes Registry of the United States (CHORUS) is an observational registry of patients diagnosed with Hereditary Hemorrhagic Telangiectasia (HHT). The purpose of this study is to better understand HHT, the symptoms and complications it causes, and the impact the disease has on people's lives. The investigators will collect long-term information about the participant, allowing us to understand how the disease changes over time, and what factors can influence those changes. Ultimately, this should help improve treatments for the disease. Another important goal of the study is to provide a way to contact people to participate in future clinical trials and other research. The registry will be a centralized resource for recruitment for clinical trials. People in the registry will not be obligated to join any of these additional studies, but if interested, can agree to be contacted if they may be eligible for a study. Participants will: * Be asked to provide permission to collect information from their medical records, including things like demographic information, diagnosis information, family history, test results, treatment information, symptoms, complications, lifestyle and other relevant medical information. * Be asked study-related questions by phone or at a clinic visit. * Be asked study-related questions every year after enrollment for up to 10 years or until the study ends. A member of the study team will communicate with participants by phone or at clinic visits to collect information regarding any changes to their health over the previous year/s including new test results, treatment information, symptoms, and complications from HHT.

RECRUITING
Intraoperative Laser Speckle Contrast Imaging of Cerebral Blood Flow
Description

The purpose of this research study is to evaluate the ability of laser speckle contrast imaging to visualize blood flow in real time during neurosurgery. Real-time blood flow visualization during surgery could help neurosurgeons better understand the consequences of vascular occlusion events during surgery, recognize potential adverse complications, and thus prompt timely intervention to reduce the risk of stroke. The current standard for visualizing cerebral blood flow during surgery is indocyanine green angiography (ICGA), which involves administering a bolus of fluorescent dye intravenously and imaging the wash-in of the dye to determine which vessels are perfused. Unfortunately, ICGA can only be used a few times during a surgery due to the need to inject a fluorescent dye, and provides only an instantaneous view of perfusion rather than a continuous view. Laser speckle contrast imaging does not require any dyes or tissue contact and has the potential to provide complementary information to ICGA. In this study we plant to collect blood flow images with laser speckle contrast imaging and to compare the images with ICGA that is performed as part of routine care during neurovascular surgical procedures such as aneurysm clipping.