This clinical trial focuses on testing the efficacy of different digital interventions to promote re-engagement in cancer-related long-term follow-up care for adolescent and young adult (AYA) survivors of childhood cancer.
The neural basis underlying motor performance in children using a prosthesis has been severely understudied resulting in minimal empirical evidence. The use of functional near-infrared spectroscopy (fNIRS) in conjunction with customized and visually appealing 3D printed prostheses would provide the unique opportunity to quantitatively assess the influence of upper-limb prostheses in the neural activation patterns of the primary motor cortex and motor performance of children. This information would increase the investigators limited knowledge of how prosthesis usage influences the primary motor cortex of growing children and use this information to develop rehabilitation programs aimed at reducing prosthesis rejection and abandonment.
The Influence of 3D Printed Prostheses on Neural Activation Patterns of the Primary Motor Cortex in Children With Unilateral Congenital Upper-limb Reductions
Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.
| Inclusion Criteria | Exclusion Criteria |
|---|---|
|
|
Sponsor: University of Nebraska
These dates track the progress of study record and summary results submissions to ClinicalTrials.gov. Study records and reported results are reviewed by the National Library of Medicine (NLM) to make sure they meet specific quality control standards before being posted on the public website.