The purpose of this study is to improve control of myoelectrically-controlled advanced orthotic devices (an exoskeleton device that use the body's muscle signals to drive movements of a robotic brace) by using advanced predictive decode algorithms, and the use of high count (\> 8) surface electromyographic (sEMG) electrodes.
The purpose of this study is to improve control of myoelectrically-controlled advanced orthotic devices (an exoskeleton device that use the body's muscle signals to drive movements of a robotic brace) by using advanced predictive decode algorithms, and the use of high count (\> 8) surface electromyographic (sEMG) electrodes.
Improving Myoelectric Prosthetic and Orthotic Limb Control
-
University of Utah, Salt Lake City, Utah, United States, 84132-2101
Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.
For general information about clinical research, read Learn About Studies.
18 Years to 70 Years
ALL
Yes
University of Utah,
2025-08-31