This clinical trial focuses on testing the efficacy of different digital interventions to promote re-engagement in cancer-related long-term follow-up care for adolescent and young adult (AYA) survivors of childhood cancer.
Accurate risk assessment is essential for the success of population screening programs and early detection efforts in breast cancer. Mirai is a new deep learning model based on full resolution mammograms. Mirai is a mammography-based deep learning model designed to predict risk at multiple timepoints, leverage potentially missing risk factor information, and produce predictions that are consistent across mammography machines. Mirai was trained on a large dataset from Massachusetts General Hospital (MGH) in the United States and found to be significantly more accurate than the Tyrer-Cuzick model, a current clinical standard. The primary aim of this study is to prospectively quantify the clinical benefit (i.e. MRI/CEM cancer detection rate) of Mirai-based guidelines and to compare them to the current standard of care. 1. Conduct a prospective study where patients who are identified as high risk by Mirai guidelines are invited to receive supplemental MRI within 12 months. 2. Compare cancer outcomes between patients only identified as high risk by Mirai and patients identified as high risk by existing guidelines The secondary aim is to study the impact of new guidelines by race and ethnicity, to ensure equitable improvements in cancer screening.
MIRAI-MRI: Comparing Screening MRI for Patients at High Risk for Breast Cancer Identified by Mirai and Tyrer-Cuzick
Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.
| Inclusion Criteria | Exclusion Criteria |
|---|---|
|
|
Sponsor: University of Massachusetts, Worcester
These dates track the progress of study record and summary results submissions to ClinicalTrials.gov. Study records and reported results are reviewed by the National Library of Medicine (NLM) to make sure they meet specific quality control standards before being posted on the public website.