Sleep is often a challenge for nightshift workers because their work and sleep schedules are inverted. Sleep is commonly measured using actigraphy, which is the standard measure of objective sleep in the general population; however, this method has substantial limitations for nightshift workers because the standard legacy algorithms only correctly identify 50.3% of daytime sleep. This significantly reduces the validity for nightshift workers. The purpose of this study is to test a novel method to expand actigraphy by using 1) a multi-sensor approach that 2) uses machine learning (ML) algorithms to increase the accuracy of detecting daytime sleep.
Sleep is often a challenge for nightshift workers because their work and sleep schedules are inverted. Sleep is commonly measured using actigraphy, which is the standard measure of objective sleep in the general population; however, this method has substantial limitations for nightshift workers because the standard legacy algorithms only correctly identify 50.3% of daytime sleep. This significantly reduces the validity for nightshift workers. The purpose of this study is to test a novel method to expand actigraphy by using 1) a multi-sensor approach that 2) uses machine learning (ML) algorithms to increase the accuracy of detecting daytime sleep.
The Use of Multiple Sensors to Track Sleep in Nightshift Workers
-
Henry Ford Columbus Medical Center, Novi, Michigan, United States, 48377
Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.
For general information about clinical research, read Learn About Studies.
18 Years to
ALL
Yes
Henry Ford Health System,
2030-01-30