Robotics-assisted electrode insertion overcomes many surgeon-related kinetic limitations such as insertion speed, tremor, drift, and lack of accurate force control. In human cadaveric cochleae, robotics-assisted electrode insertion causes less intracochlear trauma compared to manual insertion. Whether this technical advance results in functional benefits in CI patients remains unknown. To address this critical knowledge gap, the investigators will compare cochlear trauma assessed using CT scans, cochlear and AN function assessed using ECochG and/or the eCAP, and clinical outcomes quantified by postoperative residual acoustic hearing and speech perception scores between participants randomized to either manual or robotics-assisted electrode array insertion.
Robotics-assisted electrode insertion overcomes many surgeon-related kinetic limitations such as insertion speed, tremor, drift, and lack of accurate force control. In human cadaveric cochleae, robotics-assisted electrode insertion causes less intracochlear trauma compared to manual insertion. Whether this technical advance results in functional benefits in CI patients remains unknown. To address this critical knowledge gap, the investigators will compare cochlear trauma assessed using CT scans, cochlear and AN function assessed using ECochG and/or the eCAP, and clinical outcomes quantified by postoperative residual acoustic hearing and speech perception scores between participants randomized to either manual or robotics-assisted electrode array insertion.
Robotic-Assisted Versus Manual Electrode Array Insertion
-
University of Iowa Healthcare, Iowa City, Iowa, United States, 52242
Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.
For general information about clinical research, read Learn About Studies.
18 Years to 80 Years
ALL
No
University of Iowa,
Bruce Gantz, MD, PRINCIPAL_INVESTIGATOR, University of Iowa
2028-08-31