7 Clinical Trials for Peripheral Arterial Occlusive Disease
The purpose of this study is to test the effects of leg exercise assistive paddling (LEAP) therapy during prolonged sitting (PS) on vascular and functional performance in those with peripheral artery disease (PAD) and age-matched controls. LEAP therapy is a novel application of passive limb movement to enhance blood flow through the legs without muscular contractions. Specifically, LEAP therapy is the rotational passive movement of the lower leg about the knee from 90 to 180 degrees of rotation at a cadence of 1Hz. Previous literature has indicated that this movement pattern can produce robust increases in blood flow in the passively moved limb in healthy individuals, and passive limb movement may protect vascular function during PS. However, the impact of LEAP therapy to improve blood flow in the legs of those with PAD during PS is unknown. Participants will participate in a randomized cross-over design study with 2 visits (LEAP therapy and no LEAP therapy). For the first visit, participants will be randomly allocated to receive LEAP therapy during 2.5 hours of PS or not. For the second visit, participants will sit for 2.5 hours and will receive the condition that they did not previously receive. Before and after PS, the following measurements will be made: flow-mediated dilation of the popliteal and brachial arteries, arterial stiffness with tonometry techniques, microvascular vasodilatory capacity and skeletal muscle metabolic rate with near-infrared spectroscopy, autonomic nervous system function, and there will be blood drawn from the antecubital vein. After PS, participants will participate in a graded exercise test to assess functional walking capacity. Finally, during PS, near-infrared spectroscopy on the calf muscles and electrocardiogram will be collected continuously to monitor muscle oxygen availability and autonomic activity, respectively.
Peripheral artery disease (PAD) is associated with elevated oxidative stress, and oxidative stress has been implicated as the cause of reduced endothelial reactivity in individuals with PAD. Endothelial function is important because the endothelium contributes to the dilation of arteries during exercise, thereby implicating impaired endothelial function as a mechanism contributing to exacerbated exercise-induced ischemia. Therefore, the purpose of this study is to test the hypothesis that acute exogenous diroximel fumarate (Vumerity) intake will improve antioxidant capacity, thereby reducing oxidative stress and improving vascular function and walking capacity in those with PAD. During this study, participants will be administered diroximel fumarate or a placebo, and the acute effects of diroximel fumarate on vascular function and walking capacity will be assessed. Vascular function and walking capacity will be assessed with flow-mediated dilation, arterial stiffness, head-up tilt test, blood biomarkers, near-infrared spectroscopy, and a treadmill test. There will be a follow-up visit to assess blood work after diroximel fumarate.
The goal of this observational study is to identify which plaque lesions in patients with peripheral arterial disease are impenetrable and to determine which devices minimize vessel wall injury. Patients undergoing intervention will have an MRI scan prior to their planned percutaneous vascular intervention to assess the plaque and predict procedural difficulty. Patients undergoing lower limb amputation due to peripheral arterial disease will have their limbs included into a second arm of the study The limb will undergo an MRI scan to assess the plaque. The investigator will then test two different devices and assess the effects of these devices on the vessel wall.
The objective of this prospective, multicenter, randomized, controlled clinical trial is to demonstrate the superiority of the VBX Device for primary patency when compared to bare metal stenting in complex iliac occlusive disease.
Peripheral artery disease (PAD) is a cardiovascular disease manifesting from systemic atherosclerosis, which blocks the leg arteries and results in insufficient blood flow to the lower extremities. Limb ischemia from PAD is the most common disorder treated within the vascular surgery service at the Omaha Veterans' Affairs Medical Center. PAD also accounts for one-third of the operations performed in the VA Medical Centers nationwide. This project aims to establish the feasibility and acceptability of a muscle oxygen-guided supervised exercise program for patients with PAD. The investigators will determine the potential benefits of using this intervention over standard supervised exercise therapy. This modified intervention may enable patients to increase overall physical activity without the negative impacts on muscle structure and function. Increasing physical activity will decrease cardiovascular morbidity and mortality. If proven beneficial, the findings will lead to an improved exercise program that directly benefits veterans nationwide.
This is a study of biomarkers obtained from prospectively collected subject samples and their correlation with cardiovascular and metabolic diseases. The purpose of this initiative is to develop an enduring tool to allow for collaborative research between clinicians at Cleveland Clinic Main Campus and basic scientists at the Lerner Research Institute. This collaboration will allow resources to be available to clinical and basic researchers alike. This tool will enable research of vascular disease in the Vascular Lab and will leverage this valuable asset to the fullest extent to allow for interdepartmental collaboration.
Prospective, multi-center, non-randomized, open label, clinical study intended to provide data to demonstrate safety and performance of the SoundBite Crossing System XS Peripheral.