Treatment Trials

Search clinical trials by condition, location and status

Free to JoinExpert SupportLatest Treatments

Filter & Search

Clinical Trial Results

Showing 1-10 of 79 trials for Acute-leukemia
Recruiting

Tools for Reducing Inequity in Acute Leukemia (TRIAL): Beta Testing

Massachusetts · Boston, MA

This study aims to test the Tools for Reducing Inequity in Acute Leukemia (TRIAL) web-based application that is designed to support participants with acute leukemia by providing information and resources about leukemia and clinical trial participation.

Recruiting

Standard-of-Care Reduced-Intensity Conditioning (RIC) With 200 Versus 400 cGy of Total Body Irradiation (TBI) in Patients With Acute Leukemia Undergoing First Allogeneic Blood or Marrow Transplantation (BMT)

Maryland · Baltimore, MD

This is a randomized phase II trial of standard-of-care reduced-intensity conditioning (RIC) with 200 versus 400 cGy of total body irradiation (TBI) in patients with acute leukemia undergoing first allogeneic blood or marrow Transplantation (BMT). The primary objective is to compare the rates of graft-versus-host disease-free and relapse-free survival (GRFS) between patients in the two cohorts.

Recruiting

Revumenib for the Treatment of Acute Leukemia in Patients Post-Allogeneic Stem Cell Transplant

California

This phase I trial tests the safety, side effects, best dose and effectiveness of revumenib in treating patients with acute leukemia after allogeneic stem cell transplant. Revumenib is in a class of medications called menin inhibitors. Revumenib targets and binds to the protein menin, thereby preventing the interaction between menin and the mixed lineage leukemia protein. Disrupting this interaction prevents the activation of specific genes that fuel the development of leukemia cells and inhibits the survival, growth, and production of certain kinds of leukemia cells. Giving revumenib may be safe, tolerable, and/or effective in treating patients with acute leukemia after allogeneic stem cell transplant.

Recruiting

Novel Digital Application for Patients With Acute Leukemia

Massachusetts · Boston, MA

This research study is evaluating to examine the efficacy of a novel a self-administered digital application (DREAMLAND) for improving patients' long-term quality of life and psychological outcomes for patients with acute myeloid leukemia undergoing intensive chemotherapy.

Recruiting

Brain MRF in Children, Adolescents and Young Adults With Acute Leukemia

Ohio · Cleveland, OH

The survival of children, adolescents and young adults (AYA) with acute leukemia has improved dramatically over the last two decades. This success is a result of using multiple chemotherapy drugs in combination, with the inclusion of drugs that enter the brain and prevent leukemia cells from growing there. Studies in these cancer survivors have shown that the exposure to these chemotherapy drugs can lead to risks for impaired brain function, also referred to as neurocognitive side effects of chemotherapy. There is an opportunity to identify participants at risk for these side effects and to prevent their development. The purpose of this study is to incorporate a brain imaging tool known as Magnetic Resonance Fingerprinting (MRF) to look for brain matter changes in acute leukemia participants receiving chemotherapy. The MRF scan will be performed at diagnosis and repeated at multiple times during the entire therapy duration as well as at defined intervals after therapy is complete. Investigators would also do an electronic test of memory and brain function (cognitive function), which would be administered in a gaming format on iPads or a similar device. The goal will be to correlate results of MRF imaging with the tests of cognitive function. The benefits of this imaging technique include that it can be done quickly (in minutes), it is non-invasive, it is resistant to motion-artifacts and it can be easily repeated for comparison purposes. The advantages of the cognitive test include its short duration of 20 minutes and its gaming format making it friendly for children to use.

Recruiting

A Phase I Study Investigating the Combination of the Ziftomenib, Venetoclax and Azacitidine in Pediatric Relapsed and Refractory Acute Leukemias

Texas · Houston, TX

To find the highest safe dose of ziftomenib that can be combined with venetoclax and azacitidine in pediatric participants with acute leukemia that has certain types of genetic mutations (changes).

Recruiting

Adding Dasatinib Or Venetoclax To Improve Responses In Children With Newly Diagnosed T-Cell Acute Lymphoblastic Leukemia (ALL) Or Lymphoma (T-LLY) Or Mixed Phenotype Acute Leukemia (MPAL)

Oklahoma · Tulsa, OK

This is a clinical trial testing whether the addition of one of two chemotherapy agents, dasatinib or venetoclax, can improve outcomes for children and young adults with newly diagnosed T-cell acute lymphoblastic leukemia and lymphoma or mixed phenotype acute leukemia. Primary Objective * To evaluate if the end of induction MRD-negative rate is higher in patients with T-ALL treated with dasatinib compared to similar patients treated with 4-drug induction on AALL1231. * To evaluate if the end of induction MRD-negative rate is higher in patients with ETP or near-ETP ALL treated with venetoclax compared to similar patients treated with 4-drug induction on AALL1231. Secondary Objectives * To assess the event free and overall survival of patients treated with this therapy. * To compare grade 4 toxicities, event-free survival (EFS) and overall survival (OS) of patients treated with this therapy in induction and reinduction to toxicities of similar patients treated on TOT17.

Recruiting

Ziftomenib in Combination With Chemotherapy for Children With Relapsed/Refractory Acute Leukemia

Colorado · Aurora, CO

The primary objective of the study is to determine the recommended phase 2 dose (RP2D) of ziftomenib in combination with chemotherapy (FLA) in children with relapsed or refractory KMT2A-r, NUP98-r, or NPM1-m acute leukemia based on safety and pharmacokinetics (PK).

Recruiting

225Ac-DOTA-Anti-CD38 Daratumumab Monoclonal Antibody With Fludarabine, Melphalan and Total Marrow and Lymphoid Irradiation as Conditioning Treatment for Donor Stem Cell Transplant in Patients With High-Risk Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia and Myelodysplastic Syndrome

California

This phase I trial tests the safety, side effects, best dose, and effectiveness of 225Ac-DOTA-Anti-CD38 daratumumab monoclonal antibody in combination with fludarabine, melphalan and total marrow and lymphoid irradiation (TMLI) as conditioning treatment for donor stem cell transplant in patients with high-risk acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL) and myelodysplastic syndrome (MDS). Daratumumab is in a class of medications called monoclonal antibodies. It binds to a protein called CD38, which is found on some types of immune cells and cancer cells. Daratumumab may block CD38 and help the immune system kill cancer cells. Radioimmunotherapy is treatment with a radioactive substance that is linked to a monoclonal antibody, such as daratumumab, that will find and attach to cancer cells. Radiation given off by the radioisotope my help kill the cancer cells. Chemotherapy drugs, such as fludarabine and melphalan, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high energy x-rays, particles, or radioactive seeds to kill cancer cells and shrink tumors. TMLI is a targeted form of body radiation that targets marrow, lymph node chains, and the spleen. It is designed to reduce radiation-associated side effects and maximize therapy effect. Actinium Ac 225-DOTA-daratumumab combined with fludarabine, melphalan and TMLI may be safe, tolerable, and/or effective as conditioning treatment for donor stem cell transplant in patients with high-risk AML, ALL, and MDS.