Treatment Trials

Search clinical trials by condition, location and status

Free to JoinExpert SupportLatest Treatments

Filter & Search

Clinical Trial Results

Showing 1-10 of 10 trials for Acute-undifferentiated-leukemia
Recruiting

Chemotherapy (Decitabine in Combination With FLAG-Ida) and Total-Body Irradiation Followed by Donor Stem Cell Transplant for the Treatment of Adults With Myeloid Malignancies at High Risk of Relapse

Washington · Seattle, WA

This phase I/II trial studies the safety, side effects, and best dose of decitabine in combination with fludarabine, cytarabine, filgrastim, and idarubicin (FLAG-Ida) and total body irradiation (TBI) followed by a donor stem cell transplant in treating adult patients with cancers of blood-forming cells of the bone marrow (myeloid malignancies) that are at high risk of coming back after treatment (relapse). Cancers eligible for this trial are acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), and chronic myelomonocytic leukemia (CMML). Decitabine is in a class of medications called hypomethylation agents. It works by helping the bone marrow produce normal blood cells and by killing abnormal cells in the bone marrow. The FLAG-Ida regimen consists of the following drugs: fludarabine, cytarabine, filgrastim, and idarubicin. These are chemotherapy drugs that work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Filgrastim is in a class of medications called colony-stimulating factors. It works by helping the body make more neutrophils, a type of white blood cell. Radiation therapy uses high energy x-rays, particles, or radioactive seeds to kill cancer cells and shrink tumors. TBI is radiation therapy to the entire body. Giving chemotherapy and TBI before a donor peripheral blood stem cell (PBSC) transplant helps kill cancer cells in the body and helps make room in the patient's bone marrow for new blood-forming cells (stem cells) to grow. When the healthy stem cells from a donor are infused into a patient, they may help the patient's bone marrow make more healthy cells and platelets. Giving decitabine in combination with FLAG-Ida and TBI before donor PBSC transplant may work better than FLAG-Ida and TBI alone in treating adult patients with myeloid malignancies at high risk of relapse.

Recruiting

A First-in-Human Study of HLA-Partially to Fully Matched Allogenic Cryopreserved Deceased Donor Bone Marrow Transplantation for Patients With Hematologic Malignancies

California · Florida

The goal of this clinical trial is to determine the safety and feasibility of allogeneic transplantation with bone marrow from a deceased donor in patients with acute and chronic leukemias, myelodysplastic syndrome, and certain lymphomas. Patients will either receive myeloablative conditioning or reduced intensity conditioning regimen prior to the transplant. Patients will be followed for 56 days for safety endpoints and remain in follow-up for one year.

Recruiting

Tagraxofusp in Pediatric Patients With Relapsed or Refractory CD123 Expressing Hematologic Malignancies

California · Los Angeles, CA

Tagraxofusp is a protein-drug conjugate consisting of a diphtheria toxin redirected to target CD123 has been approved for treatment in pediatric and adult patients with blastic plasmacytoid dendritic cell neoplasm (BPDCN). This trial aims to examine the safety of this novel agent in pediatric patients with relapsed/refractory hematologic malignancies. The mechanism by which tagraxofusp kills cells is distinct from that of conventional chemotherapy. Tagraxofusp directly targets CD123 that is present on tumor cells, but is expressed at lower or levels or absent on normal hematopoietic stem cells. Tagraxofusp also utilizes a payload that is not cell cycle dependent, making it effective against both highly proliferative tumor cells and also quiescent tumor cells. The rationale for clinical development of tagraxofusp for pediatric patients with hematologic malignancies is based on the ubiquitous and high expression of CD123 on many of these diseases, as well as the highly potent preclinical activity and robust clinical responsiveness in adults observed to date. This trial includes two parts: a monotherapy phase and a combination chemotherapy phase. This design will provide further monotherapy safety data and confirm the FDA approved pediatric dose, as well as provide safety data when combined with chemotherapy. The goal of this study is to improve survival rates in children and young adults with relapsed hematological malignancies, determine the recommended phase 2 dose (RP2D) of tagraxofusp given alone and in combination with chemotherapy, as well as to describe the toxicities, pharmacokinetics, and pharmacodynamic properties of tagraxofusp in pediatric patients. About 54 children and young adults will participate in this study. Patients with Down syndrome will be included in part 1 of the study.

Recruiting

Phase I/II Trial: Engineered Donor Graft (Orca Q) for Pediatric Hematopoietic Cell Transplant (HCT)

Florida · Gainesville, FL

This is a first in children prospective study of allogeneic hematopoietic cell transplant using a centrally manufactured engineered donor graft (Orca-Q). The study will assess safety and efficacy of Orca-Q in pediatric patients with hematologic malignancies.

Recruiting

CLAG-M or FLAG-Ida Chemotherapy and Reduced-Intensity Conditioning Donor Stem Cell Transplant for the Treatment of Relapsed or Refractory Acute Myeloid Leukemia, Myelodysplastic Syndrome, or Chronic Myelomonocytic Leukemia

Washington · Seattle, WA

This phase I trial studies the best dose of total body irradiation when given with cladribine, cytarabine, filgrastim, and mitoxantrone (CLAG-M) or idarubicin, fludarabine, cytarabine and filgrastim (FLAG-Ida) chemotherapy reduced-intensity conditioning regimen before stem cell transplant in treating patients with acute myeloid leukemia, myelodysplastic syndrome, or chronic myelomonocytic leukemia that has come back (relapsed) or does not respond to treatment (refractory). Giving chemotherapy and total body irradiation before a donor peripheral blood stem cell transplant helps kill cancer cells in the body and helps make room in the patient's bone marrow for new blood-forming cells (stem cells) to grow. When the healthy stem cells from a donor are infused into a patient, they may help the patient's bone marrow make more healthy cells and platelets and may help destroy any remaining cancer cells. Sometimes the transplanted cells from a donor can attack the body's normal cells called graft versus host disease. Giving cyclophosphamide, cyclosporine, and mycophenolate mofetil after the transplant may stop this from happening.

Recruiting

Naive T Cell Depletion for Preventing Chronic Graft-versus-Host Disease in Children and Young Adults With Blood Cancers Undergoing Donor Stem Cell Transplant

California · Los Angeles, CA

This phase II trial studies how well naive T-cell depletion works in preventing chronic graft-versus-host disease in children and young adults with blood cancers undergoing donor stem cell transplant. Sometimes the transplanted white blood cells from a donor attack the body's normal tissues (called graft versus host disease). Removing a particular type of T cell (naive T cells) from the donor cells before the transplant may stop this from happening.

Recruiting

HA-1 T TCR T Cell Immunotherapy for the Treatment of Patients With Relapsed or Refractory Acute Leukemia After Donor Stem Cell Transplant

Washington · Seattle, WA

This phase I trial studies the side effects and best dose of CD4+ and CD8+ HA-1 T cell receptor (TCR) (HA-1 T TCR) T cells in treating patients with acute leukemia that persists, has come back (recurrent) or does not respond to treatment (refractory) following donor stem cell transplant. T cell receptor is a special protein on T cells that helps them recognize proteins on other cells including leukemia. HA-1 is a protein that is present on the surface of some peoples' blood cells, including leukemia. HA-1 T cell immunotherapy enables genes to be added to the donor cells to make them recognize HA-1 markers on leukemia cells.

Recruiting

Registry of Older Patients With Cancer

North Carolina · Chapel Hill, NC

RATIONALE: Gathering information about older patients with cancer may help the study of cancer in the future. PURPOSE: This research study is gathering information from older patients with cancer into a registry.

Recruiting

Tissue, Blood, and Body Fluid Sample Collection From Patients With Hematologic Cancer

North Carolina · Chapel Hill, NC

RATIONALE: Collecting and storing samples of tissue, blood, and body fluid from patients with cancer to study in the laboratory may help the study of cancer in the future. PURPOSE: This research study is collecting and storing blood and tissue samples from patients being evaluated for hematologic cancer.

Recruiting

3'-Deoxy-3'-[18F] Fluorothymidine PET Imaging in Patients With Cancer

Michigan · Detroit, MI

RATIONALE: Diagnostic procedures, such as 3'-deoxy-3'-\[18F\] fluorothymidine (FLT) PET imaging, may help find and diagnose cancer. It may also help doctors predict a patient's response to treatment and help plan the best treatment. PURPOSE: This phase I trial is studying FLT PET imaging in patients with cancer.