Treatment Trials

Search clinical trials by condition, location and status

Free to JoinExpert SupportLatest Treatments

Filter & Search

Clinical Trial Results

Showing 1-7 of 7 trials for B-cell-leukemias
Recruiting

A Study of BGB-16673 Compared to Investigator's Choice in Participants With Chronic Lymphocytic Leukemia or Small Lymphocytic Lymphoma Previously Exposed to Both Bruton Tyrosine Kinase (BTK) and B-cell Leukemia/Lymphoma 2 Protein (BCL2) Inhibitors

Alaska · Arkansas

The purpose of this study is to investigate the efficacy and safety of BGB-16673 compared with investigator's choice (idelalisib plus rituximab \[for CLL only\] or bendamustine plus rituximab or venetoclax plus rituximab retreatment) in participants with chronic lymphocytic leukemia (CLL) or small lymphocytic lymphoma (SLL) previously exposed to both BTK inhibitors (BTKi) and BCL2 inhibitors (BCL2i).

Recruiting

CD22 Redirected Autologous T Cells for ALL

Pennsylvania · Philadelphia, PA

This is a pilot study to determine the feasibility and safety of a single dose of autologous T cells expressing CD22 chimeric antigen receptors expressing tandem TCR-ζ and 4-1BB signaling domains (CART22/CART22-65s cells) in pediatric and young adult subjects with relapsed or refractory B cell acute lymphoblastic leukemia.

Recruiting

Allogeneic NK T-Cells Expressing CD19 Specific CAR in B-Cell Malignancies

California · San Francisco, CA

This study is a multi-center study to evaluate the safety of KUR-502 in subjects with refractory/relapsed B-cell NHL or leukemia (ALL or CLL).

Recruiting

CD19/CD22 Bicistronic Chimeric Antigen Receptor (CAR) T Cells in Children and Young Adults With Recurrent or Refractory CD19/CD22-expressing B Cell Malignancies

Maryland

Background: Acute lymphoblastic leukemia (ALL) is the most common cancer in children. About 90% of children and young adults who are treated for ALL can now be cured. But if the disease comes back, the survival rate drops to less than 50%. Better treatments are needed for ALL relapses. Objective: To test chimeric antigen receptor (CAR) therapy. CARs are genetically modified cells created from each patient s own blood cells. his trial will use a new type of CAR T-cell that is targeting both CD19 and CD22 at the same time. CD19 and CD22 are proteins found on the surface of most types of ALL. Eligibility: People aged 3 to 39 with ALL or related B-cell lymphoma that has not been cured by standard therapy. Design: Participants will be screened. This will include: Physical exam Blood and urine tests Tests of their lung and heart function Imaging scans Bone marrow biopsy. A large needle will be inserted into the body to draw some tissues from the interior of a bone. Lumbar puncture. A needle will be inserted into the lower back to draw fluid from the area around the spinal cord. Participants will undergo apheresis. Their blood will circulate through a machine that separates blood into different parts. The portion containing T cells will be collected; the remaining cells and fluids will be returned to the body. The T cells will be changed in a laboratory to make them better at fighting cancer cells. Participants will receive chemotherapy starting 4 or 5 days before the CAR treatment. Participants will be admitted to the hospital. Their own modified T cells will be returned to their body. Participants will visit the clinic 2 times a week for 28 days after treatment. Follow-up will continue for 15 years....

Recruiting

Caloric Restriction and Activity to Reduce Chemoresistance in B-ALL

California · Los Angeles, CA

This study is for older children, adolescents, and young adults with B-cell Acute Lymphoblastic Leukemia (B-ALL). Higher amounts of body fat is associated with resistance to chemotherapy in patients with B-ALL. Chemotherapy during the first month causes large gains in body fat in most people, even those who start chemotherapy at a healthy weight. This study is being done to find out if caloric restriction achieved by a personalized nutritional menu and exercise plan during routine chemotherapy can make the patient's ALL more sensitive to chemotherapy and also reduce the amount of body fat gained during treatment. The goals of this study are to help make chemotherapy more effective in treating the patient's leukemia as demonstrated by fewer patients with leukemia minimal residual disease (MRD) while also trying to reduce the amount of body fat that chemotherapy causes the patient to gain in the first month.

Recruiting

Trivalent CAR-T Cell in Acute B-Lineage Leukemia (TRICAR-ALL)

Texas · Houston, TX

This is a gene transfer study for patients with a type of blood cancer called Acute Lymphoblastic Leukemia (ALL) that has come back or has not gone away after treatment. The body has different ways of fighting infection and disease. No single way seems perfect for fighting cancers. This research study combines two different ways of fighting cancer: antibodies and T cells. Antibodies are types of proteins that protect the body from infectious diseases and possibly cancer. T cells, also called T lymphocytes, are special infection-fighting blood cells that can kill other cells, including cells infected with viruses and tumor cells. Both antibodies and T cells have been used to treat patients with cancers. They have shown promise but have not been strong enough to cure most patients. For example, T lymphocytes can kill cancer cells but there normally are not enough of them to kill all the cancer cells. Some researchers have taken T cells from a person's blood, grown more of them in the laboratory and then given them back to the person. The antibody used in this study targets CD19, CD20 and CD22. This antibody sticks to ALL cells because of a substance on the outside of these cells called CD19, CD20 and/or CD22. For this study, the antibody to CD19, CD20 and CD22 has been changed so that instead of floating free in the blood, it is now joined to the T cells. When T-cells contain an antibody that is joined to them, they are called chimeric antigen receptor- T cells or CAR-T cells. In the laboratory, we have also found that T cells work better if we also add proteins that stimulate them. One such protein is called 4-1BB. Adding the 4-1BB molecule makes the cells grow better and last longer in the body, giving them a better chance of killing the leukemia cells. In this study we are going to attach the CD19/CD20/CD22 chimeric receptor that has 4-1BB added to the patient's T cells. We will then test how long the cells last. These T cells, called "TRICAR-ALL" T cells are investigational products not approved by the Food and Drug Administration (FDA) outside the context of a clinical trial.

Recruiting

The OPAL Study: AVM0703 for Treatment of Lymphoid Malignancies

California · Duarte, CA

This is an open-label, Phase 1/2 study designed to characterize the safety, tolerability, Pharmacokinetics(PK), and preliminary antitumor activity of AVM0703 administered as a single intravenous (IV) infusion to patients with lymphoid malignancies.