Search clinical trials by condition, location and status
The goal of this clinical trial is to determine if electrical brain stimulation applied to the front parts of the brain can help people who have had a stroke improve their fatigue, language, and attention. The main question it aims to answer is: * Does transcranial direct current stimulation (tDCS) administered to the pre-frontal areas of the brain improve post-stroke fatigue and aphasia? * What kinds of participant characteristics are associated with better improvement of post-stroke fatigue and aphasia? Researchers will compare active electrical stimulation to sham stimulation to see if the active stimulation does a better job at reducing fatigue and language deficits after stroke. Participants will be asked to complete fatigue, language, and cognitive testing before and after receiving 10 sessions of tDCS plus speech and language therapy.
Apathy is a common set of symptoms seen in many people following a stroke. Apathy occurs when a person has lost motivation, becomes withdrawn, and stops doing things that used to be important to them. Apathy has a large negative impact on a person's quality of life, and can also have a large impact the people who take care of them. There are currently no FDA-approved treatments to help with apathy, and other services like therapy may be difficult to access for people who have had a stroke. To address this problem, investigators are conducting a study to find out if a form of treatment called repetitive transcranial magnetic stimulation (rTMS) can be safe and helpful for people struggling with apathy after a stroke. This study will apply a new form of rTMS which can be delivered quickly to a part of the brain called the medial prefrontal cortex (mPFC). This study will help establish whether this treatment is safe, comfortable, and effective for people with apathy after a stroke, and will help researchers develop new forms of treatment.
This trial tests a promising new intervention to promote post-stroke neural reorganization and functional recovery. The Q Therapeutic (BQ 3.0) is a wearable medical system that produces and delivers non-invasive, extremely-low-intensity and low-frequency, frequency-tuned electromagnetic fields in order to stimulate neuronal networks with the aim of reducing disability and promoting neurorecovery. This trial is a prospective, single-arm, open-label, single center clinical trial designed to evaluate the safety, feasibility, and efficacy of the Q Therapeutic (BQ 3.0) System in the rehabilitation of people with chronic stroke.
The purpose of this research is to evaluate a new investigational device for the diagnosis of stroke, the EMVision emu™ Brain Scanner. Stroke is the result of a blood clot stopping the normal flow of blood in the brain (ischaemic stroke) or a breakage in a blood vessel causing bleeding in the brain (haemorrhagic stroke). Stroke is a medical emergency and must be quickly diagnosed and treated. Computed tomography (CT) or magnetic resonance imaging (MRI) scans are commonly used to diagnose stroke, but they are not always readily available. EMVision has developed the emu™ Brain Scanner, a helmet-like device which scans the head using ultra-high frequency radio signals. It is portable and easy to use, making it more accessible than CT or MRI machines. Easier access to the EMVision emu™ Brain Scanner may reduce the time taken to diagnose stroke, leading to faster treatment and better health outcomes. It is the purpose of this study in the first instance to determine the accuracy of the EMVision emu™ Brain Scanner in the detection of haemorrhagic stroke.
Evaluate the effectiveness of the Q Therapeutic (BQ 3.0) System for individuals with chronic stroke in improving upper extremity function as determined by change in functional outcome measures after 3-month treatment, including in-clinic and at-home sessions.
The study is about using a brain stimulation technique called rTMS (Repetitive Transcranial Magnetic Stimulation) to help improve hand muscles in people who had a stroke. Researchers want to understand how this device can help stroke patients use their hands better.
Loss of reading ability due to stroke, called alexia, likely affects over a million Americans at any given time and causes difficulty performing many daily life functions, such as paying bills, using email/text, reading for pleasure, and reading signs in the community. Understanding the brain and cognitive basis of alexia could improve diagnosis and treatment of this important problem. In this study, the investigators will perform a large-scale behavioral and brain imaging study of stroke survivors and typical older adults to improve our understanding of the brain and cognitive basis of reading in both of these groups. Participants will complete a battery of tests of reading, speech, language, and thinking abilities. In addition, some participants will complete an MRI. Sessions will be completed across approximately 2-6 weeks, but may be extended depending on participants' schedules and availability. Some participants will be invited to repeat these procedures once or twice in approximately 3-12 months to monitor for changes in reading abilities and MRI measurements over time.
The investigators are investigating ways to incorporate new technologies that can enhance functional outcome after neurological insult into the patient recovery space. In order to accelerate the translation of these technologies to patient care spaces, the investigators need to identify the locations that are feasible for its use. Currently the investigators are using video game technologies that are used to maximize motor recovery of impaired upper extremities after neurological insult in the outpatient (clinic) setting. These technologies interface with robotics and other hardware to create a therapy experience that is fun, engaging, dynamic, challenging, and promotes repetitions that are otherwise difficult to achieve during conventional post-stroke rehabilitation. The investigators think early use of these technologies could enhance recovery of the arm, but It is not known if use of these technologies in the early post-stroke recovery period is safe and feasible.
This study investigates the effects of Tizanidine on the voluntary movement controls of the arms of participants who have had a stroke and have not had a stroke by measuring medication-induced changes in upper extremity kinematics, pupillometry, and brain activity. Tizanidine is approved by the U.S. Food and Drug Administration. Understanding how different areas of the brain are involved in movement impairments may help rehabilitation efforts and assist in restoring healthy movement in individuals who have had a stroke.
The purpose of this study is to evaluate the safety, feasibility, and efficacy of an exoskeletal network of passive, multi-joint springs for forearm supination. Also known as the forearm ExoNET, the device is a passive, robotic device that will properly assist forearm supination in the post-stroke adult population.