Search clinical trials by condition, location and status
The Registry and Natural History of Epilepsy-Dyskinesia Syndromes is focused on gathering longitudinal clinical data as well as biological samples (blood, urine, and/or skin/tissue) from male and female patients, of all ages, who have a genetic diagnosis of epilepsy-dyskinesia syndromes. Through prospective review and molecular data analysis, the study aims to identify patterns and correlations between movement and seizure disorders, uncovering genotype-phenotype relationships. The initiative's goals are to enhance understanding of epilepsy-dyskinesia syndromes, inform precision medicine approaches, and foster international collaboration.
The Epilepsy-Dyskinesia Study aims to advance the understanding of the clinical and molecular spectrum of epilepsy-dyskinesia syndromes, monogenic diseases that cause both movement disorders and epilepsy. Addressing challenges in rare disease research -such as small, geographically dispersed patient populations and a lack of standardized protocols- the study employs a multinational retrospective survey endorsed by the International Parkinson and Movement Disorder Society. This survey seeks to collect comprehensive data on clinical features, disease progression, age of onset, genetic variants, and concurrent neurological conditions, standardizing data collection across countries to provide a unified understanding of these conditions. Through retrospective review and molecular data analysis, the study aims to identify patterns and correlations between movement and seizure disorders, uncovering genotype-phenotype relationships. The initiative\'s goals are to enhance understanding of epilepsy-dyskinesia syndromes, inform precision medicine approaches, and foster international collaboration.
The main goal of this study is to evaluate the safety, tolerability, and preliminary efficacy of SPK-10001 in participants with Huntington's Disease.
There is limited data on outcomes for children who have undergone deep brain stimulation (DBS) for movement disorders, and individual centers performing this surgery often lack sufficient cases to power research studies adequately. This study aims to develop a multicenter pediatric DBS registry that allows multiple sites to share clinical pediatric DBS data. The primary goals are to enable large-scale, well-powered analyses of the safety and efficacy of DBS in the pediatric population and to further explore and refine DBS as a therapeutic option for children with dystonia and other hyperkinetic movement disorders. Given the current scarcity of evidence available to clinicians, this centralized multicenter repository of clinical data is critical for addressing key research questions and improving clinical practice for pediatric DBS.
DRPLA Natural History and Biomarkers Study (DRPLA NHBS) is a prospective observational study that will lay the foundation for clinical trials in DRPLA. The aims of this project are: * To characterize the natural history of DRPLA in both juvenile- and adult-onset patients and study different modalities of biomarkers in this condition. * To identify genetic factors and biomarkers that could predict disease progression. * To provide a platform to support the design and conduct of clinical trials. This study has three arms: 1. Adult Participants: this arm of the study will require participants to be 16 years old or over to participate. 2. Pediatric Participants: this arm of the study will require participants to be under 16 years old to participate. 3. Remote Participants: patients that cannot or do not wish to travel to one of the study sites can participate in this arm of the study, irrespective of their age. Participants will have an annual visit for three years (baseline visit and two follow-up visits, three visits in total). Subjects who complete the whole protocol will be assessed on two consecutive days to reduce patient burden. This project will allow for a better understanding of DRPLA and its course, and therefore allow for future clinical trials on this condition to be more precisely and effectively conducted.
Magnetic Resonance Imaging (MRI) unlike X-rays and CT-scans does not use radiation to create a picture. MRI use as the name implies, magnetism to create pictures with excellent anatomical resolution. Functional MRIs are diagnostic tests that allow doctors to not only view anatomy, but physiology and function. It is for these reasons that MRIs are excellent methods for studying the brain. In this study, researchers will use MRI to assess brain anatomy and function in X and Y chromosome variation, healthy volunteers, and patients with a variety of childhood onset psychiatric disorders. The disorders include attention deficit disorder, autism, congenital adrenal hyperplasia, childhood-onset schizophrenia, dyslexia, obsessive compulsive disorder, Sydenham's chorea, and Tourette's syndrome. Results of the MRIs showing the anatomy of the brain and brain function will be compared across age, sex (gender), and diagnostic groups. Correlations between brain and behavioral measures will be examined for normal and clinical populations.