Treatment Trials

Search clinical trials by condition, location and status

Free to JoinExpert SupportLatest Treatments

Filter & Search

Clinical Trial Results

Showing 1-4 of 4 trials for Clear-cell-sarcoma
Recruiting

Alpha/Beta T and B Cell Depletion With Zoledronic Acid for Solid Tumors

Florida · Gainesville, FL

Hematopoietic stem cell transplantation can cure patients with blood cancer and other underlying diseases. αβ-T cell and B cell depletion has been introduced to decrease GVHD and PTLD and has demonstrated effectiveness for hematologic malignancies and non-malignant diseases additionally increasing the donor pool as to allow for haploidentical transplant to safely occur. While solid tumors can be highly chemotherapy sensitive, many remain resistant and require multimodalities of treatment. Immunotherapy has been developed to harness the immune system in fighting solid tumors, though not all have targeted effects. Some solid tumors are treated with autologous transplants; however, they do not always demonstrate an improved event free survival or overall survival. There has been evidence of the use of allogeneic stem cell transplants to provide a graft versus tumor effect, though studies remain limited. By utilizing αβ-T cell and B cell depletion for stem cell transplants and combining with zoledronic acid, the immune system may potentially be harnessed and enhanced to provide an improved graft versus tumor effect in relapsed/refractory solid tumors and promote an improved event-free survival and overall survival. This study will investigate the safety of treatment with a stem cell graft depleted of αβ-T cell and CD19+ B cells in combination with zoledronic acid in pediatric and young adult patients with select solid tumors, as well as whether this treatment improves survival rates in these patients.

Recruiting

B7-H3-Specific Chimeric Antigen Receptor Autologous T-Cell Therapy for Pediatric Patients With Solid Tumors (3CAR)

Tennessee · Memphis, TN

3CAR is being done to investigate an immunotherapy for patients with solid tumors. It is a Phase I clinical trial evaluating the use of autologous T cells genetically engineered to express B7-H3-CARs for patients ≤ 21 years old, with relapsed/refractory B7-H3+ solid tumors. This study will evaluate the safety and maximum tolerated dose of B7-H3-CAR T cells.The purpose of this study is to find the maximum (highest) dose of B7-H3-CAR T cells that are safe to give to patients with B7-H3-positive solid tumors. Primary objective To determine the safety of one intravenous infusion of autologous, B7-H3-CAR T cells in patients (≤ 21 years) with recurrent/refractory B7-H3+ solid tumors after lymphodepleting chemotherapy Secondary objective To evaluate the antitumor activity of B7-H3-CAR T cells Exploratory objectives * To evaluate the tumor environment after treatment with B7-H3-CAR T cells * To assess the immunophenotype, clonal structure and endogenous repertoire of B7-H3-CAR T cells and unmodified T cells * To characterize the cytokine profile in the peripheral blood after treatment with B7-H3-CAR T cells

Recruiting

EGFR806 CAR T Cell Immunotherapy for Recurrent/Refractory Solid Tumors in Children and Young Adults

Washington · Seattle, WA

This is a phase I, open-label, non-randomized study that will enroll pediatric and young adult research participants with relapsed or refractory non-CNS solid tumors to evaluate the safety, feasibility, and efficacy of administering T cell products derived from the research participant's blood that have been genetically modified to express a EGFR-specific receptor (chimeric antigen receptor, or CAR) that will target and kill solid tumors that express EGFR and the selection-suicide marker EGFRt. EGFRt is a protein incorporated into the cell with our EGFR receptor which is used to identify the modified T cells and can be used as a tag that allows for elimination of the modified T cells if needed. On Arm A of the study, research participants will receive EGFR-specific CAR T cells only. On Arm B of the study, research participants will receive CAR T cells directed at EGFR and CD19, a marker on the surface of B lymphocytes, following the hypothesis that CD19+ B cells serving in their normal role as antigen presenting cells to T cells will promote the expansion and persistence of the CAR T cells. The CD19 receptor harbors a different selection-suicide marker, HERtG. The primary objectives of the study will be to determine the feasibility of manufacturing the cell products, the safety of the T cell product infusion, to determine the maximum tolerated dose of the CAR T cells products, to describe the full toxicity profile of each product, and determine the persistence of the modified cell in the subject's body on each arm. Subjects will receive a single dose of T cells comprised of two different subtypes of T cells (CD4 and CD8 T cells) felt to benefit one another once administered to the research participants for improved potential therapeutic effect. The secondary objectives of this protocol are to study the number of modified cells in the patients and the duration they continue to be at detectable levels. The investigators will also quantitate anti-tumor efficacy on each arm. Subjects who experience significant and potentially life-threatening toxicities (other than clinically manageable toxicities related to T cells working, called cytokine release syndrome) will receive infusions of cetuximab (an antibody commercially available that targets EGFRt) or trastuzumab (an antibody commercially available that targets HER2tG) to assess the ability of the EGFRt on the T cells to be an effective suicide mechanism for the elimination of the transferred T cell products.

Recruiting

NRSTS2021, A Risk Adapted Study Evaluating Maintenance Pazopanib, Limited Margin, Dose-Escalated Radiation Therapy and Selinexor in Non-Rhabdomyosarcoma Soft Tissue Sarcoma (NRSTS)

Louisiana · Baton Rouge, LA

The study participant has been diagnosed with non-rhabdomyosarcoma (NRSTS). Primary Objectives Intermediate-Risk * To estimate the 3-year event-free survival for intermediate-risk patients treated with ifosfamide, doxorubicin, pazopanib, surgery, and maintenance pazopanib, with or without RT. * To characterize the pharmacokinetics of pazopanib and doxorubicin in combination with ifosfamide in intermediate-risk participants, to assess potential covariates to explain the inter- and intra-individual pharmacokinetic variability, and to explore associations between clinical effects and pazopanib and doxorubicin pharmacokinetics. High-Risk * To estimate the maximum tolerated dose (MTD) and/or the recommended phase 2 dosage (RP2D) of selinexor in combination with ifosfamide, doxorubicin, pazopanib, and maintenance pazopanib in high-risk participants. * To characterize the pharmacokinetics of selinexor, pazopanib and doxorubicin in combination with ifosfamide in high-risk participants, to assess potential covariates to explain the inter- and intra-individual pharmacokinetic variability, and to explore associations between clinical effects and selinexor, pazopanib and doxorubicin pharmacokinetics. Secondary Objectives * To estimate the cumulative incidence of primary site local failure and distant metastasis-free, disease-free, event-free, and overall survival in participants treated on the risk-based treatment strategy defined in this protocol. * To define and describe the CTCAE Grade 3 or higher toxicities, and specific grade 1-2 toxicities, in low- and intermediate-risk participants. * To study the association between radiation dosimetry in participants receiving radiation therapy and the incidence and type of dosimetric local failure, normal adjacent tissue exposure, and musculoskeletal toxicity. * To evaluate the objective response rate (complete and partial response) after 3 cycles for high-risk patients receiving the combination of selinexor with ifosfamide, doxorubicin, pazopanib, and maintenance pazopanib. * To assess the relationship between the pharmacogenetic variation in drug-metabolizing enzymes or drug transporters and the pharmacokinetics of selinexor, pazopanib, and doxorubicin in intermediate- or high-risk patients. Exploratory Objectives * To explore the correlation between radiographic response, pathologic response, survival, and toxicity, and tumor molecular characteristics, as assessed through next-generation sequencing (NGS), including whole genome sequencing (WGS), whole exome sequencing (WES), and RNA sequencing (RNAseq). * To explore the feasibility of determining DNA mutational signatures and homologous repair deficiency status in primary tumor samples and to explore the correlation between these molecular findings and the radiographic response, survival, and toxicity of patients treated on this protocol. * To explore the feasibility of obtaining DNA methylation profiling on pretreatment, post-induction chemotherapy, and recurrent (if possible) tumor material, and to assess the correlation with this and pathologic diagnosis, tumor control, and survival outcomes where feasible. * To explore the feasibility of obtaining high resolution single-cell RNA sequencing of pretreatment, post-induction chemotherapy, and recurrent (if possible) tumor material, and to characterize the longitudinal changes in tumor heterogeneity and tumor microenvironment. * To explore the feasibility of identifying characteristic alterations in non-rhabdomyosarcoma soft tissue sarcoma in cell-free DNA (cfDNA) in blood as a non-invasive method of detecting and tracking changes during therapy, and to assess the correlation of cfDNA and mutations in tumor samples. * To describe cardiovascular and musculoskeletal health, cardiopulmonary fitness among children and young adults with NRSTS treated on this protocol. * To investigate the potential prognostic value of serum cardiac biomarkers (high-sensitivity cardiac troponin I (hs-cTnI), N-terminal pro B-type natriuretic peptide (NT-Pro-BNP), serial electrocardiograms (EKGs), and serial echocardiograms in patients receiving ifosfamide, doxorubicin, and pazopanib, with or without selinexor. * To define the rates of near-complete pathologic response (\>90% necrosis) and change in FDG PET maximum standard uptake value (SUVmax) from baseline to week 13 in intermediate risk patients with initially unresectable tumors treated with induction pazopanib, ifosfamide, and doxorubicin, and to correlate this change with tumor control and survival outcomes. * To determine the number of high-risk patients initially judged unresectable at diagnosis that are able to undergo primary tumor resection after treatment with ifosfamide, doxorubicin, selinexor, and pazopanib. * To identify the frequency with which assessment of volumes of interest (VOIs) of target lesions would alter RECIST response assessment compared with standard linear measurements.