Search clinical trials by condition, location and status
This phase III trial studies how well the addition of radiotherapy to the usual treatment (chemotherapy) works compared to the usual treatment alone in treating patients with esophageal and gastric cancer that has spread to a limited number of other places in the body (oligometastatic disease). Radiotherapy uses high energy x-rays, gamma rays, or protons to kill tumor cells and shrink tumors. Drugs used in usual chemotherapy, such as leucovorin, 5-fluorouracil, oxaliplatin, and capecitabine, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Adding radiotherapy to the usual chemotherapy may work better compared to the usual chemotherapy alone in treating patients with esophageal and gastric cancer.
This phase II/III trial compares the addition of nivolumab to the usual treatment of paclitaxel and ramucirumab to paclitaxel and ramucirumab alone in treating patients with gastric or esophageal adenocarcinoma that may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced). A monoclonal antibody is a type of protein that can bind to certain targets in the body, such as molecules that cause the body to make an immune response (antigens). Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Ramucirumab is a monoclonal antibody that may prevent the growth of new blood vessels that tumors need to grow. Paclitaxel is in a class of medications called antimicrotubule agents. It stops cancer cells from growing and dividing and may kill them. Adding nivolumab to ramucirumab and paclitaxel may work better to treat patients with advanced stomach or esophageal cancer.
This clinical trial evaluates the feasibility and acceptability of acupressure to the ear (auricular) to address appetite and weight in patients with stage II-IV gastric, esophageal, or pancreatic cancer. Cancer anorexia, the abnormal loss of appetite, directly leads to cancer-associated weight loss (cachexia) through malnourishment, reduced caloric intake, treatment side-effects, and other modifiable risk factors. Cachexia prolongs length of hospital stay for patients, negatively impacts treatment tolerance and adherence, and reduces overall patient quality of life. Auricular acupressure is a form of micro-acupuncture that exerts its effect by stimulating the central nervous system using adhesive taped pellets applied to specific locations on the external ear. The use of these pellets to deliver auricular acupressure has been shown to improve pain, fatigue, insomnia, nausea and vomiting, depression, and quality of life in both cancer and non-cancer settings. Auricular acupressure is a safe, inexpensive, and non-invasive approach to addressing cancer-related symptoms and treatment side-effects and may be effective at improving appetite and weight loss in stage II-IV gastric, esophageal, and pancreatic cancer patients.
This phase III trial compares the effect of modified fluorouracil, leucovorin calcium, oxaliplatin, and irinotecan (mFOLFIRINOX) to modified fluorouracil, leucovorin calcium, and oxaliplatin (mFOLFOX) for the treatment of advanced, unresectable, or metastatic HER2 negative esophageal, gastroesophageal junction, and gastric adenocarcinoma. The usual approach for patients is treatment with FOLFOX chemotherapy. Chemotherapy drugs work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Fluorouracil stops cells from making DNA and it may kill tumor cells. Leucovorin is used with fluorouracil to enhance the effects of the drug. Oxaliplatin works by killing, stopping, or slowing the growth of tumor cells. Some patients also receive an immunotherapy drug, nivolumab, in addition to FOLFOX chemotherapy. Immunotherapy may induce changes in body's immune system and may interfere with the ability of tumor cells to grow and spread. Irinotecan blocks certain enzymes needed for cell division and DNA repair, and it may kill tumor cells. Adding irinotecan to the FOLFOX regimen could shrink the cancer and extend the life of patients with advanced gastroesophageal cancers.
This phase II trial tests what effects the addition of propranolol to pembrolizumab and standard chemotherapy (mFOLFOX) may have on response to treatment in patients with esophageal or gastroesophageal junction cancer that cannot be removed by surgery and has spread to nearby tissue or lymph nodes (unresectable locally advanced) or has spread from where it first started (primary site) to other places in the body (metastatic). Propranolol is a drug that is classified as a beta-blocker. Beta-blockers affect the heart and circulation (blood flow through arteries and veins). Cancer patients may be under a tremendous amount of stress with elevated levels of norepinephrine (a hormone produced by the adrenal glands in response to stress). Increased adrenergic stress may dampen the immune system, which beta-blockers, like propranolol, may be able to counteract. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Drugs used in the standard chemotherapy regimen, mFOLFOX (leucovorin, fluorouracil and oxaliplatin) work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Adding propranolol to pembrolizumab and standard mFOLFOX chemotherapy may increase the effectiveness of the pembrolizumab + mFOLFOX regimen.
This trial collects multiple tissue and blood samples, along with medical information, from cancer patients. The "Cancer Moonshot Biobank" is a longitudinal study. This means it collects and stores samples and information over time, throughout the course of a patient's cancer treatment. By looking at samples and information collected from the same people over time, researchers hope to better understand how cancer changes over time and over the course of medical treatments.