Search clinical trials by condition, location and status
In this pivotal trial, we aim to perform a prospective study to find the efficacy of iPredict-DR, an artificial intelligence (AI) based software tool on early diagnosis of Diabetic Retinopathy (DR) in the primary care and endocrinology clinics. DR is one of the leading causes of blindness in the United States and other developed countries. Every individual with diabetes is at risk of DR. It does not show any symptoms until the disease is progressed to advanced stages. If the disease is caught at an early stage, it can be prevented, managed, or treated effectively. Currently, screening for DR is done by the Ophthalmologists, which is limited to areas with limited availability. This is also time-consuming and expensive. All of these can be complemented by automated screening and set up the screening in the primary care clinics.
This research study is being conducted to improve eye care by using artificial intelligence (AI) to make diabetic eye screenings faster and more accessible. AI technology mimics human decision-making, enabling computers and systems to analyze medication information. Specifically for this screening, AI examines digital images of the eye and based on that information, may identify if a participant has diabetic retinopathy. It can assist doctors in making decisions about a participant's diagnosis, treatment or care plans to improve patient care. This is a collaboration between San Ysidro Health (SYHealth), University of California, San Diego (UC San Diego), and Eyenuk. The Kaiser Permanente Augmented Intelligence in Medicine and Healthcare Initiative (AIM-HI) awarded SYHealth funds to demonstrate the value of AI technologies in diverse, real-world settings.
Phase 2 study to assess the efficacy of topically administered eyedrops of INV-102 during a 12-week dosing period in subjects with non-center involved DME (NCIDME) associated with NPDR \[Part 1\] and during an 8-week dosing period in subjects with center-involved DME (CIDME) associated with NPDR \[Part 2\].
In the United States, only 62% of the 37 million people with diabetes receive annual screening exams for diabetic retinopathy. One of the goals of the US Department of Health and Human Services Healthy People 2030 campaign is to increase diabetic retinopathy screening rates to 70.3%. Research indicates that low screening rates are associated with a variety of factors, including income levels, race and lack of access to care. Furthermore, because diabetic retinopathy frequently presents asymptomatically, non-adherence to screening results in postponed disease detection and a higher probability of vision loss. Currently, it is estimated that 9 million adults in the US are affected by diabetic retinopathy, and 1.8 million suffer from vision-threatening diabetic retinopathy. Importantly, the rates of vtDR vary greatly by race, with Hispanic individuals at 7.14% and Black individuals at 8.66%, compared to 3.55% in White individuals. Despite these alarming figures, the disease can be managed and vision loss can often be averted with early disease detection, thus highlighting the importance of increasing screening rates. A clear need exists for a diabetic retinopathy screening tool that can be deployed in primary care settings, addressing the shortage of specialist care and making screening more accessible to underserved populations. OPTDR01 will directly address these issues by providing accessible, high quality screening for diabetic retinopathy. OPTDR01 will automatically detect more than mild diabetic retinopathy (mtmDR) and vision-threatening diabetic retinopathy (vtDR) in diabetic adults who have not previously been diagnosed with mtmDR or vtDR.
This study is open to adults with diabetic retinopathy. People who have non-proliferative diabetic retinopathy of moderate or high severity can join the study. The purpose of this study is to find out whether a medicine called BI 764524 helps people with diabetic retinopathy. The study also aims to find a suitable treatment plan for BI 764524. Participants are put into 5 groups by chance. Participants in groups 1, 2, and 3 get BI 764524. Over 1 year, they get a different number of injections of the same dose of BI 764524 injected into 1 eye. During some visits, participants may get a sham control, which is done like an eye injection but without a needle, so that participants will not know how many injections of BI 764524 they received. Participants in group 4 only get a sham control. Participants in group 5 (only in the USA) get aflibercept or sham injections during some visits. Aflibercept is a medicine already used to treat diabetic retinopathy. Participants are in the study for one and a half years. During this time, they visit the study site at least 16 times. During this time, doctors regularly do eye exams and visual tests to assess the severity of participants' eye condition. After 1 year of treatment, researchers look at the number of participants with eye improvements. To do so, they compare eye damage and certain severe eye problems between the groups of participants. The doctors also regularly check participants' health and take note of any unwanted effects.
Diabetic retinopathy (DR) is a complication of diabetes in which blood vessels supplying blood to the back of the eye (retina) are dysfunctional. This can lead to an improper supply of oxygen and nutrients to the retinal tissue, or it may trigger the formation of new blood vessels in response to the oxygen/nutrient deficiency. Ultimately affecting the normal vision. There is no known marker that will provide information on the health status of retinal blood vessels. Using highly specialized cells in the blood, this study will try to discover a marker of DR.
This study explores the use of melatonin in patients with diabetic retinopathy
This study proposes to carefully examine the hypothesis that human inducible pluripotent stem cells (iPSCs) can be effectively employed as a future therapeutic option for individuals with diabetic retinopathy and macular ischemia. iPSCs will be generated from the peripheral blood cells of subjects with diabetes and age matched controls. The human iPSC cells will be used to generate mesoderm cells for injection into the vitreous cavity of diabetic rodents and primate eyes. The ability of mesoderm cells to generate endothelial cells and pericytes in areas of degenerated capillaries will be examined. The human iPSCs will also be used to generate hematopoietic CD34+CD45+ cells. The combination of CD34+CD45+ cells derived from iPSCs and iPSC derived mesoderm will be examined in combination for their potentially beneficial effect to enhance the vessel formation.
Results from large clinical trials demonstrate a strong association between lipid abnormalities and progression of the most common microvascular complication, diabetic retinopathy (DR). We found that activation of a master regulator of cholesterol metabolism, the nuclear hormone receptors liver X receptors (LXRα/LXRβ), prevents DR in rodent models. In this application, we seek to understand the mechanisms responsible for the beneficial effects of LXR agonists on retina and on bone marrow (BM) to preserve the function of reparative cells while reducing inflammatory cell.
The goal of this clinical trial is to evaluate the efficacy, safety, pharmacokinetics (PK) and pharmacodynamics (PD) of VX-01 as stand-alone treatment for Diabetic Retinopathy of Non-Proliferative Type (NPDR). The primary objective of the study is to evaluate the efficacy of daily oral doses of VX-01 versus placebo following 52 weeks of treatment.