Treatment Trials

Search clinical trials by condition, location and status

Free to JoinExpert SupportLatest Treatments

Filter & Search

Clinical Trial Results

Showing 1-10 of 13 trials for Diffuse-midline-glioma-h3-k27mmutant
Recruiting

CD200AR-L and Allogeneic Tumor Lysate Vaccine Immunotherapy for Recurrent HGG and Newly Diagnosed DMG/DIPG in Children and Young Adults

Minnesota · Minneapolis, MN

This is a single center Phase I study of a new adjuvant CD200 activation receptor ligand, CD200AR-L, in combination with imiquimod and GBM6-AD vaccine to treat malignant glioma in children and young adults. The primary objective of this study is to determine the maximum tolerated dose (MTD) of CD200AR-L when given with a fixed dose of GBM6-AD vaccine, imiquimod, and a single dose of radiation for patients with recurrent High Grade Glioma (HGG) or following standard of care therapy radiation therapy for newly diagnosed Newly Diagnosed Diffuse Midline Glioma/Diffuse Intrinsic Pontine Glioma (DIPG/DMG).

Recruiting

Genetically Modified Cells (KIND T Cells) for the Treatment of HLA-A*0201-Positive Patients With H3.3K27M-Mutated Glioma

California · San Francisco, CA

This phase I, first-in-human trial tests the safety, side effects, and best dose of genetically modified cells called KIND T cells after lymphodepletion (a short dose of chemotherapy) in treating patients who are HLA-A\*0201-positive and have H3.3K27M-mutated diffuse midline glioma. KIND T cells are a type of treatment in which a patient's T cells (a type of immune system cell) are changed in the laboratory into KIND T cells so they will recognize certain markers found in tumor cells. Drugs such as cyclophosphamide and fludarabine are chemotherapy drugs used to decrease the number of T cells in the body to make room for KIND T cells. Giving KIND T cells after cyclophosphamide and fludarabine may be more useful against cancer compared to the usual treatment for patients with H3.3K27M-mutated diffuse midline glioma (DMG).

Recruiting

Stereotactic Biopsy Split-Course Radiation Therapy in Diffuse Midline Glioma, SPORT-DMG Study

Arizona · Phoenix, AZ

This phase II trial studies the clinical outcomes of hypofractionated radiation therapy in patients with diffuse midline gliomas. This study aims to change the way radiation is delivered, from giving 6 weeks of radiation all at once to giving 2 weeks of radiation. This may determine if there is a difference in the outcome of the treatment, and most importantly, the patients' quality of life.

Recruiting

Atovaquone Combined With Radiation in Children With Malignant Brain Tumors

Georgia · Atlanta, GA

The goal of this interventional study is to Assess the safety and tolerability of atovaquone in combination with standard radiation therapy (RT) for the treatment of pediatric patients with newly diagnosed pediatric high-grade glioma/diffuse midline glioma/diffuse intrinsic pontine glioma (pHGG/DMG/DIPG). The secondary aim is to assess the safety and tolerability of longer-term atovaquone treatment for pediatric patients with relapsed or progressed pHGG/DMG/DIPG and medulloblastoma (MB) or pHGG/DMG/DIPG after completion of RT and before progression.

Recruiting

Study of Olutasidenib and Temozolomide in HGG

Colorado · Aurora, CO

The goal of this study is to determine the efficacy of the study drug olutasidenib to treat newly diagnosed pediatric and young adult patients with a high-grade glioma (HGG) harboring an IDH1 mutation. The main question the study aims to answer is whether the combination of olutasidenib and temozolomide (TMZ) can prolong the life of patients diagnosed with an IDH-mutant HGG.

Recruiting

Study of Ribociclib and Everolimus in HGG and DIPG

Colorado · Aurora, CO

The goal of this study is to determine the efficacy of the study drugs ribociclib and everolimus to treat pediatric and young adult patients newly diagnosed with a high-grade glioma (HGG), including DIPG, that have genetic changes in pathways (cell cycle, PI3K/mTOR) that these drugs target. The main question the study aims to answer is whether the combination of ribociclib and everolimus can prolong the life of patients diagnosed with HGG, including DIPG.

Recruiting

Targeted Pediatric High-Grade Glioma Therapy

Colorado · Aurora, CO

The goal of this study is to perform genetic sequencing on brain tumors from children, adolescents, and young adult patients who have been newly diagnosed with a high-grade glioma. This molecular profiling will decide if patients are eligible to participate in a subsequent treatment-based clinical trial based on the genetic alterations identified in their tumor.

Recruiting

Loc3CAR: Locoregional Delivery of B7-H3-CAR T Cells for Pediatric Patients With Primary CNS Tumors

Memphis, Tennessee

Loc3CAR is a Phase I clinical trial evaluating the use of autologous B7-H3-CAR T cells for participants ≤ 21 years old with primary CNS neoplasms. B7-H3-CAR T cells will be locoregionally administered via a CNS reservoir catheter. Study participants will be divided into two cohorts: cohort A with B7-H3-positive relapsed/refractory non-brainstem primary CNS tumors, and cohort B with diffuse midline gliomas (DMG). Participants will receive four (4) B7-H3-CAR T cell infusions over a 4 week period. The purpose of this study is to find the maximum (highest) dose of B7-H3-CAR T cells that are safe to give patients with primary brain tumors. Primary objectives * To determine the safety, maximum tolerated dose (MTD) and recommended phase 2 dose (RP2D) for the locoregional delivery of autologous B7-H3-CAR T cells in patients ≤ 21 years of age with recurrent/refractory B7-H3+ primary CNS tumors (Cohort A) or DMG (Cohort B). Secondary objectives * To assess the efficacy, defined as sustained objective response, a partial response (PR) or complete response (CR) observed anytime on active treatment with B7-H3-CAR T cells in patients with relapsed/refractory B7-H3+ primary CNS tumors (Cohort A) or DMG (Cohort B). * To characterize and monitor neurologic toxicities in patients while on study (Cohort A and B).

Recruiting

FUS Etoposide for DMG

New York · New York, NY

The blood brain barrier (BBB) prevents some drugs from successfully reaching the target tumor. Focused Ultrasound (FUS) using microbubbles and neuro-navigator controlled sonication is a non-invasive method of temporarily opening up the blood brain barrier to allow a greater concentration of the drug to reach into the brain tumor. This may improve response and may also reduce system side effects in the patient. The primary purpose of this study is to evaluate the feasibility of safely opening the blood brain barrier in children with progressive diffuse midline gliomas (DMG) treated with oral etoposide using focused ultrasound with microbubbles and neuro-navigator-controlled sonication. For the purpose of the study, the investigators will be opening up the blood brain barrier temporarily in one or two locations around the tumor using the non-invasive focused ultrasound technology, and administrating oral etoposide in children with progressive diffuse midline glioma.

Recruiting

Combination Therapy for the Treatment of Diffuse Midline Gliomas

Alabama · Birmingham, AL

This phase II trial determines if the combination of ONC201 with different drugs, panobinostat or paxalisib, is effective for treating participants with diffuse midline gliomas (DMGs). Despite years of research, little to no progress has been made to improve outcomes for participants with DMGs, and there are few treatment options. ONC201, panobinostat, and paxalisib are all enzyme inhibitors that may stop the growth of tumor cells by clocking some of the enzymes needed for cell growth. This phase II trial assesses different combinations of these drugs for the treatment of DMGs.