Treatment Trials

Search clinical trials by condition, location and status

Free to JoinExpert SupportLatest Treatments

Filter & Search

Clinical Trial Results

Showing 1-10 of 19 trials for Ependymoma
Recruiting

Individualized Treatment Plan in Children and Young Adults With Relapsed Medulloblastoma and Ependymoma

California · Los Angeles, CA

The current study will use a new treatment approach based on the molecular characteristics of each participant's tumor. The study will test the feasibility in the pilot phase of performing real-time drug screening on tissue taken during surgery in patients with relapsed medulloblastoma or ependymoma and of having a specialized tumor board assign a treatment plan based on the results of this screening and genomic sequencing. The aim of this trial is to allow every child and young adult with relapsed medulloblastoma and ependymoma to receive the most effective and least toxic therapies currently available and will pave the way for improved understanding and treatment of these tumors in the future. Moreover, if successful, it could serve as a paradigm for personalized medicine programs for other types of cancer.

Recruiting

LET Optimized IMPT in Treating Pediatric Patients With Ependymoma

Massachusetts · Boston, MA

This phase I trial studies the side effects of linear energy transfer (LET) optimized image modulated proton therapy (IMPT) in treating pediatric patients with ependymoma. Radiation therapy such as LET optimized IMPT, uses proton beams to kill tumor cells and shrink tumors without damaging surrounding normal tissues.

Recruiting

Immunotherapy for Recurrent Ependymomas in Children Using Tumor Antigen Peptides with Imiquimod

Pennsylvania · Pittsburgh, PA

The purpose of this study is to see if vaccination with HLA-A2 restricted peptides, combined with the immunoadjuvant imiquimod is safe and can induce immune responses in children with recurrent ependymomas. Eligible patients are stratified by primary tumor location.

Recruiting

Antiangiogenic Therapy for Children with Recurrent Medulloblastoma, Ependymoma and ATRT

Illinois · Chicago, IL

Patients with relapsed medulloblastoma, ependymoma and ATRT have a very poor prognosis whether treated with conventional chemotherapy, high-dose chemotherapy with stem cell rescue, irradiation or combinations of these modalities. Antiangiogenetic therapy has emerged as new treatment option in solid malignancies. The frequent, metronomic schedule targets both proliferating tumor cells and endothelial cells, and minimizes toxicity. In this study the investigators will evaluate the use of biweekly intravenous bevacizumab in combination with five oral drugs (thalidomide, celecoxib, fenofibrate, and alternating cycles of daily low-dose oral etoposide and cyclophosphamide), augmented with alternating courses of intrathecal etoposide and cytarabine. The aim of the study is to extend therapy options for children with recurrent or progressive medulloblastoma, ependymoma and ATRT, for whom no known curative therapy exists, by prolonging survival while maintaining good quality of life. The primary objective of the MEMMAT trial is to evaluate the activity of this multidrug antiangiogenic approach in these heavily pretreated children and young adults. Additionally, progression-free survival (PFS), overall survival (OS), as well as feasibility and toxicity will be examined.

Recruiting

Fourth Ventricular Administration of Immune Checkpoint Inhibitor (Nivolumab) and Methotrexate or 5-Azacytidine for Recurrent Medulloblastoma, Ependymoma, and Other CNS Malignancies

Texas · Houston, TX

The goal of this clinical trial is to assess the safety, toxicity, and antitumor activity of fourth ventricular infusions of nivolumab plus 5-azacytidine for recurrent ependymoma and nivolumab plus methotrexate for recurrent medulloblastoma and other CNS malignancies. Additionally, the study will explore immunologic responses to nivolumab. The hypothesis is that local administration of nivolumab, an immune checkpoint inhibitor, is safe and will lead to even more robust treatment responses when administered following 5-azacytidine in patients with recurrent ependymoma or methotrexate in patients with medulloblastoma or other CNS tumors.

Recruiting

Chemo-immunotherapy Using Ibrutinib Plus Indoximod for Patients With Pediatric Brain Cancer

Georgia

Recent lab-based discoveries suggest that IDO (indoleamine 2,3-dioxygenase) and BTK (Bruton's tyrosine Kinase) form a closely linked metabolic checkpoint in tumor-associated antigen-presenting cells. The central clinical hypothesis for the GCC2020 study is that combining ibrutinib (BTK-inhibitor) with indoximod (IDO-inhibitor) during chemotherapy will synergistically enhance anti-tumor immune responses, leading to improvement in clinical response with manageable overlapping toxicity. GCC2020 is a prospective open-label phase 1 trial to determine the best safe dose of ibrutinib to use in combination with a previously studied chemo-immunotherapy regimen, comprised of the IDO-inhibitor indoximod plus oral metronomic cyclophosphamide and etoposide (4-drug combination) for participants, age 6 to 25 years, with relapsed or refractory primary brain cancer. Those previously treated with indoximod plus temozolomide may be eligible, including prior treatment via the phase 2 indoximod study (GCC1949, NCT04049669), the now closed phase 1 study (NLG2105, NCT02502708), or any expanded access (compassionate use) protocols. A dose-escalation cohort will determine the best safe dose of ibrutinib for the 4-drug combination. This will be followed by an expansion cohort, using ibrutinib at the best safe dose in the 4-drug combination, to allow assessment of preliminary evidence of efficacy.

Recruiting

Peds CHAMP1ON - Hematopoietic Stem Cell And Monoclonal Antibody PD-1 Blockade for RecurreNt Pediatric High-Grade Glioma

Florida · Gainesville, FL

This is a Phase I study of ex vivo expanded CD34+ hematopoietic stem cells (exHSCs) plus nivolumab in pediatric patients with histologically confirmed diagnosis of a non-brainstem high-grade glioma (NB-HGG, WHO Grade III or IV astrocytoma, oligodendrogliomas, oligoastrocytomas, ependymomas) that is recurrent, progressive or refractory following radiotherapy with or without chemotherapy. Patients must be candidates for standard of care surgical resection or biopsy.

Recruiting

PLX038 in Primary Central Nervous System Tumors Containing MYC or MYCN Amplifications

Maryland · Bethesda, MD

Background: About 90,000 new cases of brain and spinal cord tumors are diagnosed annually in the United States. Most of these tumors are benign; however, about 30% are malignant, and 35% of people with malignant tumors in the brain and spinal cord will die within 5 years. Many of these people have changes in certain genes (MYC or MYCN) that drive the development of their cancers. Objective: To test a study drug (PLX038) in people with tumors of the brain or spinal cord. Eligibility: People aged 18 years or older with a tumor of the brain or spinal cord. Some participants must also have tumors with changes in the MYC or MYCN genes. Design: Participants will be screened. They will have a physical exam and blood tests. They will have imaging scans and a test of their heart function. They may need to have a biopsy: A sample of tissue will be removed from their tumor. PLX038 is given through a tube attached to a needle inserted into a vein in the arm. All participants will receive PLX038 on the first day of each 21-day treatment cycle. They will take a second drug 3 days later to help reduce the risk of infection; for this drug, participants will be shown how to inject themselves under the skin at home. Blood tests, imaging scans, and other tests will be repeated during study visits. Hair samples will also be collected during these visits. Some participants may have an additional biopsy. Study treatment will continue up to 7 months. Follow-up visits will continue every few months for up to 5 years.

Recruiting

Loc3CAR: Locoregional Delivery of B7-H3-CAR T Cells for Pediatric Patients With Primary CNS Tumors

Memphis, Tennessee

Loc3CAR is a Phase I clinical trial evaluating the use of autologous B7-H3-CAR T cells for participants ≤ 21 years old with primary CNS neoplasms. B7-H3-CAR T cells will be locoregionally administered via a CNS reservoir catheter. Study participants will be divided into two cohorts: cohort A with B7-H3-positive relapsed/refractory non-brainstem primary CNS tumors, and cohort B with diffuse midline gliomas (DMG). Participants will receive four (4) B7-H3-CAR T cell infusions over a 4 week period. The purpose of this study is to find the maximum (highest) dose of B7-H3-CAR T cells that are safe to give patients with primary brain tumors. Primary objectives * To determine the safety, maximum tolerated dose (MTD) and recommended phase 2 dose (RP2D) for the locoregional delivery of autologous B7-H3-CAR T cells in patients ≤ 21 years of age with recurrent/refractory B7-H3+ primary CNS tumors (Cohort A) or DMG (Cohort B). Secondary objectives * To assess the efficacy, defined as sustained objective response, a partial response (PR) or complete response (CR) observed anytime on active treatment with B7-H3-CAR T cells in patients with relapsed/refractory B7-H3+ primary CNS tumors (Cohort A) or DMG (Cohort B). * To characterize and monitor neurologic toxicities in patients while on study (Cohort A and B).

Recruiting

Phase I Study of Oral ONC206 in Recurrent and Rare Primary Central Nervous System Neoplasms

Maryland

The primary objective of this Phase 1, open-label, dose-escalation, and exploratory study is to evaluate the safety and tolerability profile (establish the maximum-tolerated dose) and evaluate the occurrence of dose-limiting toxicities (DLTs) following single weekly or multiple-day weekly dose regimens of single-agent, oral ONC206 in patients with recurrent, primary central nervous system (CNS) neoplasms.