Search clinical trials by condition, location and status
This study is being done to test whether low-intensity focused ultrasound (LIFU) (low energy sound waves) cause temporary changes in brain activity and behavior when directed at particular parts of the brain. By targeting LIFU to the parts of the brain thought to be responsible for essential tremor (ET), and measuring any associated improvement in tremor, the investigators hope to show that LIFU can be a useful tool for studying the brain circuits responsible for tremor and other brain disorders.
The investigators propose to advance Vim-FUSA (Ventral Intermediate Nucleus - Focused Ultrasound Ablation) with the support of 3-D tractography, a neuroimaging technique to visually represent nerve tracts within the brain. The investigators hypothesize that 3-D tractography Vim-FUSA will improve the Vim ablation compared to standard Vim-FUSA and prove safe and feasible in the clinical setting. The investigators also hypothesize that intraoperative magnetic resonance (i-MR) monitoring will differentiate ablated tissue from immediate perilesional edema and accurately predict the Vim-FUSA clinical outcomes.
The purpose of this study is to collect electrophysiological data related to functional brain network changes in patients undergoing deep brain stimulation for the treatment of essential tremor. Participants will either 1) have electroencephalography (EEG) scalp electrodes placed, or 2) remain seated with their head inside of a magnetoencephalography (MEG) recording system, as resting-state and task-related data are acquired. Spontaneous electrophysiological activity will be recorded in both the eyes open and eyes closed conditions with the participant seated comfortably. These recordings will be repeated in the DBS OFF and DBS ON states, with the ON state involving specific settings identified as optimal, sub-optimal, or ineffective at achieving tremor control. They will also be repeated following the optional administration non-DBS tremor mitigation techniques, which may include one or more of the following: 1) cooling the limb, 2) oral administration of alprazolam, 3) oral consumption of ethanol (alcohol), or 4) peripheral nerve stimulation.
The goal of this clinical study is to compare ulixacaltamide and placebo treatment in essential tremor. The main question it aims to answer is: • Is ulixacaltamide a safe and efficacious treatment for patients with essential tremor? Participants will be asked to participate in one of two clinical studies where they will be treated with either ulixacaltamide or placebo for a period of up to 12 weeks. After the controlled study completion, they will be eligible to participate in a long-term, open-label safety study and be treated with ulixacaltamide.
Deep brain stimulation (DBS) is a surgical procedure for the treatment of Essential Tremor (ET). A novel approach to current DBS approaches is called coordinated reset DBS (CR-DBS) which uses different patterns of stimulation at lower currents and can address the limitations of traditional DBS that uses continuous high amplitude, high frequency stimulation. This study will evaluate the feasibility, safety and short-term efficacy of thalamic CR-DBS in upper extremity ET. The goal of this study is to evaluate the safety and short-term efficacy of thalamic CR- DBS in ET, including the acute (during CR-DBS) and carryover (following DBS cessation) effects, and compare these to those induced by clinically optimized T-DBS. To achieve our goal, a low-risk, two-phase clinical study will be conducted in patients with upper extremity (UE) ET. The first aim is to identify the spatial location and peak frequency of tremor related oscillatory activities in VIM (Phase I). The second aim is to compare the acute effects of thalamic CR-DBS to clinically optimized T-DBS (Phase II).
The purpose of this study is to elucidate the structural connectivity of the dentato-rubro-thalamic tract (DRTt) and to detect functional network changes due to DRTt stimulation
This is a feasibility study based on physician-initiated Investigational Device Exemption (IDE) including intraoperative experiments and chronic testing of implanted dual thalamic DBS lead systems. This study will inform protocols for optimal use of implanted next-gen DBS systems for primarily tremor control in refractory essential tremor.If the approach appears to be successful, the pilot data generated will be used to base a future pivotal trial for FDA approval for enhanced tremor control and adaptive DBS (aDBS) functionality of DBS systems.
Essential tremor (ET) is among the most common movement disorders, and is the most prevalent tremor disorder. It is a progressive, degenerative brain disorder that results in increasingly debilitating tremor, and afflicts an estimated 7 million people in the US (2.2% of the population) and estimates from population studies worldwide range from 0.4% to 6.3%. ET is directly linked to progressive functional impairment, social embarrassment, and even depression. Intention (kinetic) tremor of the arms occurs in approximately half of ET patients, and is typically a slow tremor (\~5-10Hz) that occurs at the end of a purposeful movement, and is insidiously progressive over many years. Based on direct and indirect neurophysiological studies, it has been suggested that a pathological synchronous oscillation in a neuronal network involving the ventral intermediate nucleus (Vim) of the thalamus, the premotor (PM), primary motor (M1) cortices, and the cerebellum, may result in the production of ET. In spite of the numerous therapeutic modalities available, 65% of those suffering from upper limb tremor report serious difficulties during their daily lives. Deep brain stimulation (DBS) has emerged as an effective treatment option for those suffering from medically refractory ET. The accepted target for ET DBS therapy is the Vim thalamus. Vim projects to PM, M1, and supplementary motor areas (SMA) and receives afferents from the ipsilateral cerebellum. Moreover, electrophysiological recordings from Vim during stereotactic surgery have identified "tremor cells" that synchronously discharge with oscillatory muscle activity during tremor. Clinical and computational findings indicate that DBS suppresses tremor by masking these "burst driver" inputs to the thalamus. The overall goal is to investigate the neural signatures of tremor generation in the thalamocortical network by recording data during DBS implantation surgery. Investigators will record data from the macroelectrode implanted in the Vim for DBS therapy, and through an additional 6-contact subdural cortical strip that will be placed on the hand motor cortical area temporarily through the same burr hole opened for the implantation of the DBS electrode.
The purpose of this study is to determine the changes in quality of life and degree of tremor for patients with essential tremor or Parkinsonian tremor who are treated by stereotactic radiosurgery (SRS). This is a questionnaire-based study. Please see Detailed Description below for more information.
Subjects will receive prototype devices to be used for participation. The study comprises three phases: 1. Alpha phase: Two remote study visits and an in-home period to gather device usability data on the alpha system. The at home period for this phase will be 2 weeks. This phase will be used to confirm that the device and labeling are suitable for in-home use. 2. Beta Phase B1: Beta Phase B1 will be conducted using the beta devices for two in-person or remote, 60 to 90-minute, visits. This phase will be used to assess design changes between alpha and beta versions. 3. Beta Phase B2: Seven remote visits and in-home usage to gather usability and efficacy data on the beta system in-home. Beta Phase B2 will be conducted using the beta devices for 12 weeks. This phase will be used to assess design changes between alpha and beta versions.