Treatment Trials

Search clinical trials by condition, location and status

Free to JoinExpert SupportLatest Treatments

Filter & Search

Clinical Trial Results

Showing 1-10 of 113 trials for Gait
Recruiting

Investigating the Cholinergic Contribution to Gait Dysfunction in Parkinson's Disease

Virginia · Charlottesville, VA

People with Parkinson's disease often experience problems with 'gait' and balance. Gait refers to the way a person moves while walking, such as their speed and length of steps. People with Parkinson's may experience slowness of movement, shuffle their feet, or have periods of 'freezing', during which their feet feel like they are stuck to the floor. Some people may struggle to maintain their balance and fall. These symptoms are frequently disabling and can lead to a worse quality of life. The nervous system is your body's messaging system - it helps different parts of your body communicate with one another. Neurotransmitters are chemicals that deliver those messages from one part of the body to another. The purpose of this study is to determine if the use of ARICEPT (Donepezil hydrochloride) improves gait and balance and its relation to the size of an area of the brain called "Cholinergic Nucleus 4" (Ch4). The study team is also studying how degeneration (breakdown and eventual loss) in Ch4 contributes to problems with gait and balance. One way this may happen is through the loss of a chemical in the brain called acetylcholine. Acetylcholine is a neurotransmitter and its activity is associated with alertness, thinking, and the ability to move. Taking a drug that increases acetylcholine, such as ARICEPT, may improve gait and balance. By better understanding this relationship, we may be able to improve the treatment of gait and balance problems in the future.

Recruiting

Robotic Apparel to Prevent Freezing of Gait in Parkinson Disease

Massachusetts · Boston, MA

Freezing-of-gait (FoG) in Parkinson Disease (PD) is one of the most vivid and disturbing gait phenomena in neurology. Often described by patients as a feeling of "feet getting glued to the floor," FoG is formally defined as a "brief, episodic absence or marked reduction of forward progression of the feet despite the intention to walk." This debilitating gait phenomena is very common in PD, occurring in up to 80% of individuals with severe PD. When FoG arrests walking, serious consequences can occur such as loss of balance, falls, injurious events, consequent fear of falling, and increased hospitalization. Wearable robots are capable of augmenting spatiotemporal gait mechanics and are emerging as viable solutions for locomotor assistance in various neurological populations. For the proposed study, our goal is to understand how low force mechanical assistance from soft robotic apparel can best mitigate gait decline preceding a freezing episode and subsequent onset of FoG by improving spatial (e.g. stride length) and temporal features (e.g. stride time variability) of walking. We hypothesize that the ongoing gait-preserving effects can essentially minimize the accumulation of motor errors that lead to FoG. Importantly, the autonomous assistance provided by the wearable robot circumvents the need for cognitive or attentional resources, thereby minimizing risks for overloading the cognitive systems -- a known trigger for FoG, thus enhancing the repeatability and robustness of FoG-preventing effects.

Recruiting

Personalized Cognitive Integrated Motor Training Using Virtual Reality to Improve Gait and Balance

New Jersey · West Orange, NJ

Problems with walking and balance are common after traumatic brain injury (TBI). Walking and balance problems limit independence and increase risk for injuries due to falls. The purpose of this research study is to test the effectiveness of training that combines moving and thinking tasks, referred to as Personalized cognitive integrated sensorimotor virtual reality (VR)/augmented reality (AR) training on walking and balance ability. The study will also help to understand the changes in thinking ability and brain activity as a result of this training after a brain injury. The study will evaluate the differences between three intervention groups (n=45 each): 1) personalized cognitive integrated sensorimotor VR/AR training (CMT), 2) traditional dual-task training (CTRL), and 3) standard of care (SOC) on gait, balance, community ambulation, and cognitive functions, as well as underlying biomechanical and neurophysiological mechanisms to understand the changes due to CMT.

Recruiting

AB Gait Estim Neurophysiology

Georgia · Atlanta, GA

This study is being done to answer the question: What are the effects of electrical stimulation and stepping practice on connections between the brain and muscles? The long-term goal of this project is to develop novel, effective, and personalized rehabilitation protocols founded on an understanding of neurobiological mechanisms that combine electrical stimulation with gait training to improve gait performance in older adults and stroke survivors. The rationale of this project is to explore and generate preliminary data regarding how electrical stimulation-based strategies modulate cortical and spinal circuits in able-bodied individuals. The researchers will evaluate the effects of short treadmill walking bouts or single gait training sessions with and without electrical stimulation on somatosensory, spinal-reflex, corticospinal circuit neurophysiology, and/or gait performance. The study will provide important preliminary and normative data that can explain how brain circuits change with stimulation or stepping practice and inform future rehabilitation studies on patients. The study population is able-bodied individuals.

Recruiting

Movement Amplification Gait Training to Enhance Walking Balance Post-Stroke

Illinois · Chicago, IL

Stroke is a leading cause of disability in the United States, affecting approximately 795,000 people annually. The Veteran's Health Administration provides over 60,000 outpatient visits for stroke-related care annually at a cost of over $250 million. Among ambulatory people with chronic stroke (PwCS), impaired balance is a common health concern that substantially limits mobility (those with the worst balance walk the least). This project will explore adaptive strategies employed by PwCS in balance challenging environments and if a novel gait training intervention using a robotic device to amplify a person's self-generated movements can improve walking balance. The development of effective interventions to increase walking balance among PwCS will positively impact Veterans' health, quality of life, and ability to participate in walking activities.

Recruiting

Gait Adaptation and Biofeedback for Cerebral Palsy

Minnesota

This research aims to evaluate walking function in children with cerebral palsy (CP). The researchers want to understand how children with CP adapt and learn new ways of moving. They have previously found that measuring how a person controls their muscles is important for assessing walking ability and response to interventions. In these studies, they will adjust the treadmill belt speeds and/or provide real-time feedback to evaluate how a child can alter their movement. The feedback will include a wearable exoskeleton that provides resistance to the ankle and audio and visual cues based on sensors that record muscle activity. This research will investigate three goals: first, to measure how children with CP adapt their walking; second, to see if either repeated training or orthopedic surgery can improve adaptation rates; and third, to determine if individual differences in adaptation relate to improvements in walking function after treatment. This research will help develop better treatments to enhance walking capacity and performance for children with CP.

Recruiting

Targeted Motor Learning to Improve Gait for Individuals With Parkinson Disease

North Carolina · Chapel Hill, NC

The purpose of this research study is to determine how training to step with a metronome on both a treadmill, as well as overground, will influence the way that people with Parkinson disease walk. Using metronomes is commonly used in clinics, but the investigators will be using a combination of slow and fast frequencies to alter the way that people walk. The use of a slower frequency metronome on the treadmill is intended to help participants take larger steps. The use of a faster frequency metronome while walking overground is intended to help participants take faster steps.This will take place over 12 training sessions. Each session will be about an hour. It will include some walking tests and pictures of the brain (using MRI) before and after training.

Recruiting

Gait Rehabilitation to Treat FastOA

North Carolina · Chapel Hill, NC

The purpose of this study is to determine the effects of real-time gait biofeedback delivered over a 6-week period on early markers of FastOA and conduct 6-week and 6-month follow-up assessments in anterior cruciate ligament reconstructed patients.

Recruiting

Cortical Correlates of Gait in Parkinson's Disease: Impact of Medication and Cueing

Oregon · Portland, OR

The purpose of the study is to determine the effects of a novel, personalized, tactile cueing system on gait automaticity. The researchers hypothesized that step-synchronized tactile cueing will reduce prefrontal cortex activity (improve automaticity) and improve gait variability (as well as gait speed). The researchers predict that improved automaticity with improved gait variability will be associated with increased activation of other than prefrontal cortical areas while walking (i.e., sensory-motor). To determine the effects of cueing, 60 participants with PD from will be randomized into one, of two, cueing interventions: 1) personalized, step-synchronized tactile cueing and 2) tactile cueing at fixed intervals as an active control group. In addition, the researchers will explore the feasibility and potential benefits of independent use of tactile cueing during a week in daily life for a future clinical trial. This project will characterize the cortical correlates of gait automaticity, the changes in gait automaticity with cueing in people with Parkinson's Disease, and how these changes translate to improvement in gait and turning. The long-term goal is to unravel the mechanisms of impaired gait automaticity in Parkinson's Disease.

Recruiting

Optimization Principles in Hemiparetic Gait

California · Los Angeles, CA

This project seeks to identify the how walking impairments in stroke survivors contribute to mobility deficits through the use of behavioral observations and computational models. The chosen approach integrates biomechanical analyses, physiological assessments and machine learning algorithms to explain how asymmetries during walking influence balance and the effort required to walk. Ultimately, the results of this work may lead to more personalized rehabilitation strategies to improve walking capacity and efficiency, and ultimately reduce fall risk in stroke survivors.