Search clinical trials by condition, location and status
This clinical trial tests how well a digital treatment platform using a mobile application works for the delivery of home-based sequential therapy in patients with glioma. Access to specialized neuro-oncology care in the United States for patients with glioma is critically deficient. Care at centers with neuro-oncology specialists is associated with improved survival outcomes, yet many patients have limited access due to distance, disease-related disability, or lack of financial resources. The application provides patients continuous access to their care team in the home setting. A digital treatment platform may increase clinical trial participation and accelerate development of novel therapeutics while addressing a great health disparity in patients with glioma.
This early phase I trial tests the safety, side effects and how well medication combinations of dasatinib, quercetin, fisetin and temozolomide work in treating patients with glioma for which the patient has received treatment in the past (previously treated) and for tumor cells that remain after attempts to treat the tumor have been made (residual disease). Dasatinib is in a class of medications called tyrosine kinase inhibitors. It works by blocking the action of an abnormal protein that signals tumor cells to multiply, which may help keep tumor cells from growing. Quercetin and fisetin are compounds found in plants. They have antioxidant and anti-inflammatory properties and help remove senescent cells, older or damaged cells that have stopped dividing but don't die off as they should and build up in tissues over time. Senescent cells may cause inflammation or damage to nearby healthy cells. Temozolomide is in a class of medications called alkylating agents. It works by damaging the cell's deoxyribonucleic acid (DNA) and may kill tumor cells and slow down or stop tumor growth. Giving medication combinations of dasatinib, quercetin, fisetin and temozolomide may be safe, tolerable and/or effective in treating patients with previously treated glioma with residual disease.
This phase IV trial compares patient satisfaction with telehealth versus in-person neuro-oncology assessments among glioma patients receiving oral chemotherapy. Gliomas are the most common primary central nervous system cancer and are associated with a high symptom burden, such as drowsiness, fatigue, memory difficulty, and difficulty communicating. Care at a high volume center is associated with an overall survival benefit, however, many patients may have physical or financial difficulties preventing access to these centers. Telehealth visits use computers, cameras, videoconferencing, the internet, satellite, and wireless communications to deliver healthcare, while in-person visits require the interaction to take place in the physical presence of someone else. Telehealth neuro-oncology assessments may be preferable compared to in-person assessments in glioma patients receiving oral chemotherapy.
The purpose of this study is to measure the benefit of adding abemaciclib to the chemotherapy, temozolomide, for newly diagnosed high-grade glioma following radiotherapy. Your participation could last approximately 11 months and possibly longer depending upon how you and your tumor respond.
The goal of this interventional study is to evaluate the efficacy of APG-157 in combination with Bevacizumab in subjects with recurrent high-grade glioma. The main questions the study aims to answer are: * Progression-free and overall survival of patients receiving this combination; * Quality of Life (QOL); and * Tumor response on imaging The participants will take APG-157 daily by dissolving two pastilles in their mouth at around breakfast, lunch and dinner time (total of six pastilles per day). The pastilles dissolve in the mouth. The participants will continue to receive Bevacizumab as standard of care.
This is an observational study to compare the utility of the novel aMRI approach in human brain to the standard of care imaging approach for diagnosing and assessing glioma. Tumor cells have altered metabolism compared to normal cells.This makes metabolic activity imaging useful for diagnosing and assessing neurological disease. However, current options for metabolic activity imaging are limited. Metabolic activity imaging is primarily conducted using positron emission tomography (PET) with a radioactive tracer called fludeoxyglucose F-18 (¹⁸FDG). A PET scan is a procedure in which a small amount of radioactive glucose (¹⁸FDG) is injected into a vein, and a scanner is used to make detailed, computerized pictures of areas inside the body where the glucose is taken up. PET imaging is very expensive and is usually much less available than other imaging techniques such as magnetic resonance imaging (MRI). MRI uses radiofrequency waves and a strong magnetic field to provide clear and detailed pictures of internal organs and tissues. While MRI is more available than PET, it isn't as useful in evaluating metabolic activity. Unlike standard MRI, the aMRI approach uses new ways of analyzing MRI images that provides information about tumor cell metabolic activity. Via direct comparison with a standard metabolic imaging approach, ¹⁸FDG PET, this clinical trial will assess the validity of aMRI as a metabolic imaging approach for evaluating neurological disease in patients with glioma.
To learn if the study drug, ulixertinib, can cross over the blood-brain barrier in patients with recurrent brain tumors
Background: Diffuse gliomas are tumors that affect the brain and spinal cord. Gliomas that develop in people with certain gene mutations (IDH1 or IDH2) are especially aggressive. Better treatments are needed. Objective: To see if a study drug (zotiraciclib) is effective in people with recurrent diffuse gliomas who have IDH1 or IDH2 mutations. Eligibility: People aged 15 years and older with diffuse gliomas that returned after treatment. They must also have mutations in the IDH1 or IDH2 genes. Design: Participants will be screened. They will have a physical exam with blood and urine tests. They will have tests of their heart function. They will have an MRI of their brain. A new biopsy may be needed if previous results are not available. Zotiraciclib is a capsule taken by mouth with a glass of water. Participants will take the drug at home on days 1, 4, 8, 11, 15, and 18 of a 28-day cycle. They may also be given medications to prevent side effects of the study drug. The schedule for taking the study drug may vary for participants who will undergo surgery. Participants will be given a medication diary for each cycle. They will write down the date and time of each dose of the study drug. Participants will visit the clinic about once a month. They will have a physical exam, blood tests, and tests to evaluate their heart function. An MRI of the brain will be repeated every 8 weeks. Participants may remain in the study for up to 18 cycles (1.5 years). ...
This is a randomized, double-blind, placebo-controlled, parallel-group, international, Phase 3 study in patients with newly diagnosed H3 K27M-mutant diffuse glioma to assess whether treatment with ONC201 following frontline radiotherapy will extend overall survival and progression-free survival in this population. Eligible participants will have histologically diagnosed H3 K27M-mutant diffuse glioma and have completed standard frontline radiotherapy.
The purpose of this study is to see if 18F-fluciclovine (Axumin®) PET imaging is useful and safe in the management of children with High Grade Gliomas. Investigators seek to determine if this imaging will help doctors tell the difference between tumor growth (progression) and other tumor changes that can occur after treatment.