Treatment Trials

Search clinical trials by condition, location and status

Free to JoinExpert SupportLatest Treatments

Filter & Search

Clinical Trial Results

Showing 1-4 of 4 trials for Grade-ii-meningioma
Recruiting

Observation or Radiation Therapy in Treating Patients With Newly Diagnosed Grade II Meningioma That Has Been Completely Removed by Surgery

Alabama · Birmingham, AL

This randomized phase III trial studies how well radiation therapy works compared with observation in treating patients with newly diagnosed grade II meningioma that has been completely removed by surgery. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors.

Recruiting

Stereotactic Radiosurgery and Immunotherapy (Pembrolizumab) for the Treatment of Recurrent Meningioma

California · San Francisco, CA

This phase II trial studies the effect of stereotactic radiosurgery and pembrolizumab in treating patients with meningioma that has come back (recurrent). Stereotactic radiosurgery is a type of external radiation therapy that uses special equipment to position the patient and precisely give a single large dose of radiation to a tumor. It is used to treat brain tumors and other brain disorders that cannot be treated by regular surgery. Pembrolizumab is a humanized monoclonal antibody. An antibody is a common type of protein made in the body in response to a foreign substance. Antibodies attack foreign substances and protect against infection. Antibodies can also be produced in the laboratory for use in treating patients; an antibody that is made in the lab is also known as a humanized monoclonal antibody. Pembrolizumab is a highly selective humanized monoclonal antibody that is designed to block the action of the receptor PD-1. It has been studied in lab experiments and in other types of cancer. The PD-1 receptor works to keep the immune system from noticing tumor cells. The addition of pembrolizumab to stereotactic radiosurgery may improve the progression free survival of patients with meningioma.

Recruiting

Hypofractionated Proton Therapy for Benign Intracranial Brain Tumors, the HiPPI Study

Georgia · Atlanta, GA

This phase II trial studies how well hypofractionated proton or photon radiation therapy works in treating patients with brain tumors. Hypofractionated radiation therapy delivers higher doses of radiation therapy over a shorter period of time and may kill more tumor cells. A shorter duration of radiation treatment may avoid some of the delayed side effects of radiation while providing a more convenient treatment and reducing costs.

Recruiting

Optune Delivered Electric Field Therapy and Bevacizumab in Treating Patients With Recurrent or Progressive Grade 2 or 3 Meningioma

California · Santa Monica, CA

The purpose of this research study is to determine the effects bevacizumab (the study drug) combined with Optune (the study device) tumor treatment field therapy has on meningiomas. Bevacizumab is considered investigational because the US Food and Drug Administration (FDA) has not approved its use for the treatment of meningiomas. The study drug is a medication that blocks the growth of new blood vessels. It is thought that the study drug may interfere with the growth of new blood vessels and therefore might stop tumor growth, and possibly shrink the tumor by keeping it from receiving nutrients and oxygen supplied by the blood vessels. Optune is also considered investigational because the US FDA has not approved its use for the treatment of meningiomas. Optune is a device that the patient will wear and use for at least 18 hours of each day. It delivers alternating electrical current to the patient's brain tumor and by doing so interrupts a process called mitosis. Mitosis needs to occur in order for cell division to occur and allows tumors to grow. By slowing this process, we hypothesize that meningioma growth may also be slowed.