Treatment Trials

Search clinical trials by condition, location and status

Free to JoinExpert SupportLatest Treatments

Filter & Search

Clinical Trial Results

Showing 1-8 of 8 trials for Hyperinsulinemia
Recruiting

Cardiometabolic Benefit of Reducing Iatrogenic Hyperinsulinemia Using Insulin Adjunctive Therapy in Type 1 Diabetes

Tennessee

This study aims to understand the heart and blood sugar health benefits of using an adjunctive therapy to lower high insulin levels in people with type 1 diabetes. The investigators will also look at people with a specific type of diabetes called Glucokinase-Maturity Onset Diabetes of the Young (GCK-MODY) and those without diabetes to help interpret the results. The investigators will use a medication that helps the body get rid of sugar, called and SGLT2 inhibitor, with the goal to reduce the body's insulin requirements. The investigators believe this could lead to better heart and blood sugar health, including a better response to insulin and more available nitric oxide, a gas that helps blood vessels function well. The investigators will compare heart and blood sugar health risk factors in participants with type 1 diabetes, participants with Glucokinase-Maturity Onset Diabetes of the Young (GCK-MODY), and non-diabetic healthy volunteers under two conditions: high insulin levels typical of type 1 diabetes and normal insulin levels typical of the other two groups.

Recruiting

Diazoxide Suppression Test P&F Study

New York · New York, NY

The goal of this study is to learn about how the hormone insulin controls blood sugar. The main question it aims to answer is about how much insulin the body actually needs to maintain a normal blood sugar level. People with obesity and high insulin levels will receive eight doses of diazoxide, a drug that suppresses the pancreas's production of insulin, and will have their fasting blood sugar and insulin levels checked daily while taking the drug.

Recruiting

Graded Insulin Suppression Test P&F

New York · New York, NY

The goal of this study is to learn about how the hormone insulin controls blood sugar in a variety of people. The main question it aims to answer is about how much insulin the body actually needs to maintain a normal blood sugar level. Participants will be asked to come in for a one-day study visit in which they will undergo a "graded insulin suppression test" ("GIST"). The GIST involves intravenous (into the vein) infusions of octreotide, a medication that turns off the body's own production of insulin, as well as replacement of insulin at two different levels (low and high), with or without replacement of glucagon, and glucose (sugar). The study investigators will check blood sugar levels every few minutes during the procedure to determine the effect of the two different insulin levels. This study will evaluate the GIST in both healthy volunteers and those at higher risk for type 2 diabetes.

Recruiting

The Movie Theater Study

Indiana · Muncie, IN

Increasing attention has been paid to meals with unusual characteristics that are consumed on a semi-regular basis (e.g., "tailgating," pizza buffets). The purpose of this study is to describe the acute cardiometabolic effects of a cinema-style meal rich in refined sugar, total carbohydrate, and moderate in fat (i.e., soda, popcorn, candy).

Recruiting

Clinical and Molecular Characteristics of Primary Aldosteronism in Blacks

Maryland

Background: The adrenal gland makes the hormone aldosterone. This helps regulate blood pressure. An adrenal gland tumor that makes too much aldosterone can cause high blood pressure and low potassium. The cause of these tumors is unknown, but sometimes they are inherited. Objective: To study the genes that may cause primary aldosteronism in Black individuals. Eligibility: People ages 18-70 who: Are Black, African American, or of Caribbean descent And have difficult to control blood pressure or primary aldosteronism Relatives of people with primary aldosteronism Design: Participants who are relatives of people with primary aldosteronism will have only 1 visit, with medical history and blood tests. Participants with primary aldosteronism or difficult to control blood pressure (suspected to possibly have primary aldosteronism) will be screened with a 1-2 hour visit. If they qualify, they will return for a hospital stay for 7-10 days. Tests may include: Medical history Physical exam Blood tests: Participants will have a small tube (IV catheter) inserted in a vein in the arm. They may drink a glucose-containing liquid or get a salt solution. If medically indicated, they may have invasive blood tests with a separate consent. Urine tests: Some require a high-salt diet for 3 days. Heart tests Scans: Participants lie in a machine that takes pictures of the body. A dye may be injected through a vein. Small hair sample taken from near the scalp. Kidney ultrasound Bone density scan: Participants lie on a table while a camera passes over the body. If the doctors feel it is medically necessary, they will offer participants treatment depending on their results. These treatments may cure the patient of their disease and may include: 1. Having one adrenal gland removed by the Endocrine surgeon under anesthesia. Patients will have follow-up visits 2-4 weeks after surgery. 2. Taking drugs to block the effects of aldosterone Participants may return about 1 year later to repeat testing.

Recruiting

Human Models of Selective Insulin Resistance: Alpelisib, Part I

New York · New York, NY

The goal of this clinical trial is to understand how the blood sugar-lowering hormone insulin works in healthy adults versus those who are at risk for type 2 diabetes. The study will use a drug called alpelisib, which interferes with insulin's actions in the body, to answer the study's main question: does the liver continue to respond to insulin's stimulation of fat production even when it loses the ability to stop making glucose (sugar) in response to insulin. Researchers will compare the impact of single doses of both alpelisib and placebo (inert non-drug) in random order (like flipping a coin) in study participants. Participants will be asked to stay twice overnight in the hospital, take single doses of alpelisib and placebo (one or the other on each of the two hospital stays), and receive intravenous (into the vein) infusions of non-radioactive "tracer" molecules that allow researchers to measure the production of glucose (sugar) and fats by the liver. Measurements will be done both overnight, while participants are asleep and fasting (not eating or drinking other than water) and while consuming a standardized diet of nutritional beverages during the following day. The objective is to evaluate the effect of lowering insulin levels, while maintaining constant mild hyperglycemia, on plasma glucose and lipid levels.

Recruiting

Fasting Insulin and HOMA-IR by Age, Sex, Race/Ethnicity, BMI, and PCOS Diagnosis

Texas · Houston, TX

The study aims to investigate the relationship between fasting insulin and Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) across various demographic factors, including age, sex, race/ethnicity, BMI, and polycystic ovary syndrome (PCOS) diagnosis. By analyzing these variables, the study seeks to identify potential variations in insulin levels, which could provide valuable insights into the impact of different factors on metabolic health and the development of insulin-related conditions.

Recruiting

Evexomostat Plus PI3K or AKT Inhibitor and Fulvestrant in Patients With a PI3K Alteration and HR+/Her2- Breast Cancer

California · San Diego, CA

This is a Phase 1b/2, open-label, parallel-arms pilot study in men and post-menopausal women with hormone receptor positive (HR+), HER2- advanced or metastatic breast cancer with an alteration in the PI3K pathway, including a mutation of the PIK3CA gene, PTEN loss, or AKT1 mutation, designed to determine the safety of evexomostat (SDX-7320) plus standard of care treatment alpelisib (BYL-719) or capivasertib and fulvestrant (each combined, the 'triplet therapy'), to measure the severity and number of hyperglycemic events, and to assess clinical, anti-tumor benefit of the triplet therapy. The purpose of this study is: * to characterize the safety of the triplet drug combination consisting of either alpelisib or capivasertib (per the treating oncologist's choice) and fulvestrant plus evexomostat, * to test whether evexomostat, when given in combination with either alpelisib or capivasertib and fulvestrant will reduce the number and severity of hyperglycemic events and/or reduce the number or dose of anti-diabetic medications needed to control the hyperglycemia for metabolically normal patients and those deemed at risk for capivasertib and alpelisib-induced hyperglycemia (insulin resistance, as measured by HOMA-IR, baseline elevated HbA1c or well-controlled type 2 diabetes), and * to assess preliminary anti-tumor efficacy for each combination and changes in key biomarkers and quality of life in this patient population.