Search clinical trials by condition, location and status
The purpose of this research is to evaluate a new investigational device for the diagnosis of stroke, the EMVision emu™ Brain Scanner. Stroke is the result of a blood clot stopping the normal flow of blood in the brain (ischaemic stroke) or a breakage in a blood vessel causing bleeding in the brain (haemorrhagic stroke). Stroke is a medical emergency and must be quickly diagnosed and treated. Computed tomography (CT) or magnetic resonance imaging (MRI) scans are commonly used to diagnose stroke, but they are not always readily available. EMVision has developed the emu™ Brain Scanner, a helmet-like device which scans the head using ultra-high frequency radio signals. It is portable and easy to use, making it more accessible than CT or MRI machines. Easier access to the EMVision emu™ Brain Scanner may reduce the time taken to diagnose stroke, leading to faster treatment and better health outcomes. It is the purpose of this study in the first instance to determine the accuracy of the EMVision emu™ Brain Scanner in the detection of haemorrhagic stroke.
Intracranial hemorrhage (ICH) can occur due to traumatic and spontaneous events.1 The incidence of non-traumatic, spontaneous ICH is approximately 40,000 to 67,000 cases per year while the incidence of traumatic brain injury (TBI) is nearly 1.7 million annually
Stroke is one of the leading causes of mortality and disability worldwide. Optimization of intra-hospital pathways is as of today one of the most promising research topics in stroke treatment. A potential solution to shorten the time needed for current workflows, and therefore reperfusion, is to do both imaging and subsequent endovascular therapy (EVT) in the angiography suite using non-contrast syngo DynaCT Sine Spin (FDCT) for the exclusion of intracranial hemorrhage and flat detector CT angiography (FDCTA) or digital subtraction angiography for diagnosis of LVO. It is still a matter of debate if FDCT can reliably differentiate between ischemic and hemorrhagic stroke. This study aims to investigate if non-contrast syngo DynaCT Sine Spin imaging is non-inferior to non-contrast MDCT imaging regarding its sensitivity and specificity for the detection of intracranial hemorrhages.
This study is a two-stage, pivotal, prospective, non-randomized, multi-center, within patient comparison of the SENSE device and the standard diagnostic test, head CT scan in patients with a diagnosis of primary spontaneous ICH or traumatic intracranial bleeding for the detection and monitoring of intracranial hemorrhages.
This prospective, randomized study aims to comprehensively evaluate the impact of cranioplasty timing on postoperative complications and long-term functional outcomes following decompressive hemicraniectomy (DHC). The primary endpoint focuses on comparing the rates of various postoperative complications, including infection, seizures, return to the operating room, and the need for ventriculoperitoneal shunting, between patients undergoing standard of care cranioplasty (\>3 months after DHC) and those receiving early cranioplasty (within 8 weeks).
The goal of this observational study is to develop and validate a clinical tool to predict which adolescents aged 11 to less than 18 years of age with mild traumatic brain injury (mTBI) are at an increased risk for developing significant new or worsening mental health conditions. The main aims the study wish to answer are: * Does the adolescent have new or worsening depression or anxiety defined as a change from their previous medical history using self-reported questionnaires at either one or three months post-injury? * Does the adolescent have unmet mental health care needs, defined as not receiving any mental or behavior health care in patients with new or worsening anxiety or depression as defined by the self reported questionnaires? Participants will be enrolled after being diagnosed in the emergency department (ED) with an mTBI. During the ED visit, the child's parent/caregiver and the adolescent will complete several questionnaires related to mental health which include tools to measure anxiety and depression. Participants will be asked to complete these questionnaires again at 1 month and 3 months post enrollment.
The NSR-GENE study is a longitudinal cohort study of approximately 300 parent-child trios from the Neonatal Seizure Registry and participating site outpatient clinics that aims to evaluate whether and how genes alter the risk of post-neonatal epilepsy among children with acute provoked neonatal seizures. The researchers aim to develop prediction rules to stratify neonates into low, medium, and high risk for post-neonatal epilepsy based on clinical, electroencephalogram (EEG), magnetic resonance imaging (MRI), and genetic risk factors.
The purpose of this study is to evaluate the safety and tolerability of ascending doses (Part A) and selected doses (Part B) of BB-031 in acute ischemic stroke patients presenting within 24 hours of stroke onset. Participants will be randomized to receive one dose of either the investigational drug or placebo and will be followed for 90 days. A total of 156 patients are planned in this study.
The global objective of this study is to establish the safety and investigate the potential treatment effect of an intravenous infusion of HB-adMSCs (Hope Biosciences adipose-derived mesenchymal stem cells) on brain structure, neurocognitive/functional outcomes, and neuroinflammation after traumatic brain injury.
This is a single-site, single-arm, open-label pilot study assessing the safety, feasibility, and efficacy of non-invasive vagus nerve stimulation (nVNS), gammaCore, for the acute treatment of aneurysmal subarachnoid hemorrhage (SAH) subjects in a neurocritical care setting. 25 patients will be enrolled, all treated with an active device. The primary efficacy outcomes are reduced aneurysm rupture rate, reduced seizure and seizure-spectrum activity, minimized hemorrhage grades, and increased survival.