Search clinical trials by condition, location and status
This phase I trial tests the safety, side effects, best dose, and effectiveness of 225Ac-DOTA-Anti-CD38 daratumumab monoclonal antibody in combination with fludarabine, melphalan and total marrow and lymphoid irradiation (TMLI) as conditioning treatment for donor stem cell transplant in patients with high-risk acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL) and myelodysplastic syndrome (MDS). Daratumumab is in a class of medications called monoclonal antibodies. It binds to a protein called CD38, which is found on some types of immune cells and cancer cells. Daratumumab may block CD38 and help the immune system kill cancer cells. Radioimmunotherapy is treatment with a radioactive substance that is linked to a monoclonal antibody, such as daratumumab, that will find and attach to cancer cells. Radiation given off by the radioisotope my help kill the cancer cells. Chemotherapy drugs, such as fludarabine and melphalan, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high energy x-rays, particles, or radioactive seeds to kill cancer cells and shrink tumors. TMLI is a targeted form of body radiation that targets marrow, lymph node chains, and the spleen. It is designed to reduce radiation-associated side effects and maximize therapy effect. Actinium Ac 225-DOTA-daratumumab combined with fludarabine, melphalan and TMLI may be safe, tolerable, and/or effective as conditioning treatment for donor stem cell transplant in patients with high-risk AML, ALL, and MDS.
Participants will have a sample of their white blood cells, called T cells, collected using a procedure called leukapheresis. The collected T cells will be sent to a laboratory to be changed (modified) to become 19-28z/IL-18, the CAR T-cell therapy that participants will receive during the study. Making the participants' study therapy will take about 2-4 weeks.
This phase I trial tests the side effects and best dose of total marrow lymphoid irradiation along with chemotherapy, with fludarabine and melphalan, with or without thiotepa, in combination with Orca-T cells for patients with acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL) or myelodysplastic syndrome (MDS). Total marrow and lymphoid irradiation is a targeted form of total body irradiation that uses intensity-modulated radiation therapy to target marrow, lymph node chains, and the spleen. It is designed to reduce radiation-associated side effects and maximize the radiation therapeutic effect. Giving chemotherapy with medications such as thiotepa, fludarabine, and melphalan before a treatment with stem cells helps kill cancer cells in the body and helps make room in the patient's bone marrow for new blood-forming cells (stem cells) to grow. Orca-T cells take cells from a donor and remove some of the T cells and replace them with partially engineered T cells in order to induce better tolerance in patients. Giving total marrow and lymphoid irradiation and chemotherapy followed by Orca -T cells may be an effective treatment for patients with AML, ALL or MDS.
This study will combine both T cells and antibodies in order to create a more effective treatment. The treatment tested in this study uses modified T-cells called Autologous T Lymphocyte Chimeric Antigen Receptor (ATLCAR) cells targeted against the kappa light chain antibody on cancer cells. For this study, the anti-kappa light chain antibody has been changed so instead of floating free in the blood, a part of it is now joined to the T cells. Only the part of the antibody that sticks to the lymphoma cells is attached to the T cells. When an antibody is joined to a T cell in this way, it is called a chimeric receptor. The kappa light chain chimeric (combination) receptor-activated T cells are called ATLCAR.κ.28 cells. These cells may be able to destroy lymphoma cancer cells. They do not, however, last very long in the body so their chances of fighting the cancer are unknown. Previous studies have shown that a new gene can be put into T cells to increase their ability to recognize and kill cancer cells. A gene is a unit of DNA. Genes make up the chemical structure carrying your genetic information that may determine human characteristics (i.e., eye color, height and sex). The new gene that is put in the T cells in this study makes an antibody called an anti-kappa light chain. This anti-kappa light chain antibody usually floats around in the blood. The antibody can detect and stick to cancer cells called lymphoma cells because they have a substance on the outside of the cells called kappa light chains. The purpose of this study is to determine whether receiving the ATLCAR.κ.28 cells is safe and tolerable and learn more about the side effects and how effective these cells are in fighting lymphoma. Initially, the study doctors will test different doses of the ATLCAR.κ.28, to see which dose is safer for use in lymphoma patients. Once a safe dose is identified, the study team will administer this dose to more patients, to learn about how these cells affect lymphoma cancer cells and identify other side effects they might have on the body. This is the first time ATLCAR.κ.28 cells are given to patients with lymphoma. The Food and Drug Administration (FDA), has not approved giving ATLCAR.κ.28 as treatment for lymphoma. This is the first step in determining whether giving ATLCAR.κ.28 to others with lymphoma in the future will help them.
This study evaluates the impact of calaspargase pegol (Cal-PEG) on the coagulation system in pediatric patients with acute lymphoblastic leukemia/lymphoma (ALL).
The goal of this clinical research study is to learn if obecabtagene autoleucel (obe-cel) can help to control newly diagnosed, high-risk B-cell ALL when given as consolidation therapy. Consolidation therapy is given after the first phase of treatment.
Multicenter Parallel 2 Cohort Phase 2 Study of LP-168 and Obinutuzumab for Previously Treated, and T474 Gatekeeper Mutant Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma (CLL/SLL) and Variants of This.
To learn if the drug combination pirtobrutinib, venetoclax, and obinutuzumab can help to control relapsed CLL/SLL.
The goal of this study is to compare how well sonrotoclax plus obinutuzumab works versus venetoclax plus rituximab in treating adults with relapsed and/or refractory (R/R) chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL). The study will also compare how well sonrotoclax plus rituximab works versus venetoclax plus rituxumab in treating adults with R/R CLL/SLL. The safety of these treatments will also be assessed.
This will be a Phase 1, open-label study to evaluate the safety and efficacy of BEAM-201 in patients with R/R T-ALL or T-LLy. BEAM-201 is an allogeneic anti-CD7 CART therapy.