Treatment Trials

Search clinical trials by condition, location and status

Free to JoinExpert SupportLatest Treatments

Filter & Search

Clinical Trial Results

Showing 1-10 of 16 trials for Malignant-brain-tumors
Recruiting

Atovaquone Combined With Radiation in Children With Malignant Brain Tumors

Georgia · Atlanta, GA

The goal of this interventional study is to Assess the safety and tolerability of atovaquone in combination with standard radiation therapy (RT) for the treatment of pediatric patients with newly diagnosed pediatric high-grade glioma/diffuse midline glioma/diffuse intrinsic pontine glioma (pHGG/DMG/DIPG). The secondary aim is to assess the safety and tolerability of longer-term atovaquone treatment for pediatric patients with relapsed or progressed pHGG/DMG/DIPG and medulloblastoma (MB) or pHGG/DMG/DIPG after completion of RT and before progression.

Recruiting

FearLess in NeuroOncology

Virginia · Richmond, VA

The overarching goal of this project is to assess the feasibility, acceptability, and appropriateness of recruitment methods, target population, and a waitlist design to finalize the protocol of FearLess in primary malignant brain tumor patients and caregivers

Recruiting

Breathing Practice for Brain and Mental Health in Cancer and Neurodegenerative Diseases

Minnesota · Rochester, MN

This clinical trial studies the effect of respiratory training for enhancing brain and mental health among patients with multiple sclerosis (MS) and cancer (along with their caregivers). The relationship between respiration, cardiovascular effects in the brain, mental health, and neurophysiological mechanisms are significant for patient populations facing complex health challenges, such as those with cancer and neurodegenerative disease, and their caregivers. By measuring oxygen delivery to brain tissues and cerebrospinal fluid flow, this trial may help researchers investigate the potential benefits of respiratory training for patients with MS and cancer and their caregivers.

Recruiting

Remote Cognitive Assessment and Wearable Device While Assessing the Impact of Metformin in Patients With History of Cranial Radiation Therapy

Rochester, Minnesota

This phase III trial evaluates whether patient care can be done remotely for patients having cranial (skull) radiation or who have previously had cranial radiation. In addition, this trial compares study outcomes between patients who get metformin and those who do not. Cranial radiation, an essential component of brain tumor treatment, can result in significant negative effects on cognitive (the ability to clearly think, learn, and remember) function. Wearable devices have been used in the field of neurology for seizure detection and assessment of patients with movement disorders. Wearable device technology has also been implemented for remote monitoring of cancer patients and for cancer clinical trials. Metformin is the active ingredient in a drug used to treat type 2 diabetes mellitus (a condition in which the body cannot control the level of sugar in the blood). It is also being studied in the treatment of cancer. Use of metformin may reduce risk of cognitive decline following radiation therapy within the skull (intracranial). These effects may be further strengthen by addition of device-based physical activity promotion. Mayo Test Drive is a web-based platform for remote self-administered cognitive assessment. Using Mayo Test Drive may help determine whether patient care can be done remotely, while simultaneously evaluating benefits of health promotion through use of a wearable watch device and metformin in preventing radiation-related cognitive decline.

Recruiting

ASCENT Intervention for Brain Tumor Patients

Massachusetts · Boston, MA

The goal of this study is to refine and test a psychosocial intervention called ASCENT (ACT-based Supportive intervention for patients with CENTral nervous system tumors). This intervention was developed to help patients after being diagnosed with a brain tumor. The main question this study aims to answer is whether this intervention is feasible (i.e., possible to carry out) and acceptable (i.e., considered helpful) to patients. Participants will be asked to take part in 6 coaching sessions and complete short surveys at four different time points. Some participants will be asked to share feedback via interviews.

Recruiting

NeuroPathways Intervention for Brain Tumor Patients

Massachusetts · Boston, MA

This goal of this study is to test an information and support intervention for patients with malignant (or "high-grade") brain tumors. This study was developed to help patients cope after a brain tumor diagnosis. The main question this study aims to answer is whether this intervention (which includes access to an information guide and one-on-one coaching sessions) is feasible (i.e., possible to carry out) and acceptable (i.e., considered helpful) to patients. Participants will be asked to take part in the coaching sessions, use the guide as desired, and complete a small group of short surveys at three different points in time; some participants will be asked to share feedback via exit interviews.

Recruiting

CAR T Cells After Lymphodepletion for the Treatment of IL13Rα2 Positive Recurrent or Refractory Brain Tumors in Children

California · Duarte, CA

This phase I trial investigates the side effects of chemotherapy and cellular immunotherapy in treating children with IL13Ralpha2 positive brain tumors that have come back after a period of improvement (recurrent) or do not respond to treatment (refractory). Cellular immunotherapy (IL13(EQ)BBzeta/CD19t+ T cells) are brain-tumor specific cells that may induce changes in body's immune system and may interfere with the ability of tumor cells to grow and spread. Chemotherapy drugs, such as as cyclophosphamide and fludarabine, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Many patients with brain tumor respond to treatment, but then the tumor starts to grow again. Giving chemotherapy in combination with cellular immunotherapy may kill more tumor cells and improve the outcome of treatment.

Recruiting

Feasibility of FMISO in Brain Tumors

Oregon · Portland, OR

This phase II trial studies how well ¹⁸F- fluoromisonidazole (FMISO) works with positron emission tomography (PET)/magnetic resonance imaging (MRI) in assessing participants with malignant (cancerous) brain tumors. FMISO provides information about the oxygen levels in a tumor, which may affect how the tumor behaves. PET/MRI imaging produces images of the brain and how the body functions. FMISO PET/MRI may help investigators see how much oxygen is getting in the brain tumors.

Recruiting

Panitumumab-IRDye800 in Diagnosing Participants With Malignant Glioma Undergoing Surgery

California · Palo Alto, CA

The phase I/II trial studies the side effects and best dose of panitumumab-IRDye800 in diagnosing participants with malignant glioma who undergo surgery. Panitumumab-IRDye800 can attach to tumor cells and make them more visible using a special camera during surgery, which may help surgeons better distinguish tumor cells from normal brain tissue and identify small tumors that cannot be seen using current imaging methods.

Recruiting

Educational Tools for the Improvement of Early Advance Care Planning in Adolescents and Young Adults With Advanced Solid Tumors and High-Grade Brain Tumors

Scottsdale, Arizona

This clinical trial studies whether educational tools work to improve early advance care planning (ACP) in adolescents and young adults (AYAs) with solid tumors that may have spread from where they first started to nearby tissue, lymph nodes, or distant parts of the body (advanced) and high-grade brain tumors. The incidence of AYA cancers is on the rise with approximately 90,000 new diagnoses yearly in the United States. Cancer remains the leading cause of disease-related death among AYAs, which could be due to patients having more advanced disease at presentation. It is recommended that AYAs begin ACP conversations at the start of treatment. ACP includes clarifying goals of care, discussions about end-of-life preferences, and completing a legal document that states the treatment or care a person wishes to receive or not receive if they become unable to make medical decisions (advance directive). The educational tools in this study include an early ACP educational video featuring AYAs with cancer and an ACP appointment geared for AYAs. Patients can access and watch the educational video at home prior to their scheduled ACP appointment. During the ACP appointment, a tailored ACP guide made specifically for AYAs is reviewed and questions regarding ACP are answered. This may help to introduce the importance of key ACP concepts, which may improve early ACP in AYAs with advanced solid tumors and high-grade brain tumors.