Search clinical trials by condition, location and status
This study is being done to identify patient and caregiver burdens regarding their experience with diagnosis and treatment of CNS tumors. These results will help doctors find areas where patients and caregivers may need more support.
This study explores how microorganisms in the gut can affect the growth and progression of brain tumors.
This is a Phase 1 study of central nervous system (CNS) locoregional adoptive therapy with SC-CAR4BRAIN, an autologous CD4+ and CD8+ T cells lentivirally transduced to express to express combinations of B7-H3, EGFR806, HER2, and IL13-zetakine chimeric antigen receptors (CAR). CAR T cells are delivered via an indwelling catheter into the ventricular system in children and young adults with diffuse intrinsic pontine glioma (DIPG), diffuse midline glioma (DMG), and recurrent or refractory CNS tumors. A child or young adult meeting all eligibility criteria, including having a CNS catheter placed into their ventricular system, and meeting none of the exclusion criteria will have their T cells collected. The T cells will then be bioengineered into a second-generation CAR T cell that target B7H3, EGFR806, HER2, and IL13-zetakine on tumor cells. Patients will be assigned to 1 of 2 treatment Arms based on the type of their tumor: * Arm A is for patients with DIPG (meaning primary disease localized to the pons, metastatic disease is allowed) anytime after standard radiation OR after progression. * Arm B is for patients with non-pontine DMG (meaning DMG in other parts of the brain such as the thalamus or spine) anytime after standard radiation OR after progression. This Arm also includes other recurrent/refractory CNS tumors.
This phase I/II trial evaluates the best dose, side effects and possible benefit of CBL0137 in treating patients with solid tumors, including central nervous system (CNS) tumors or lymphoma that has come back (relapsed) or does not respond to treatment (refractory). Drugs, such as CBL0137, block signals passed from one molecule to another inside a cell. Blocking these signals can affect many functions of the cell, including cell division and cell death, and may kill cancer cells.
This phase II trial studies the effect of avapritinib in treating malignant solid tumors that have a genetic change (mutation) in CKIT or PDGFRA and have spread to nearby tissue or lymph nodes (locally advanced) or other places in the body (metastatic). Avapritinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Avapritinib may help to control the growth of malignant solid tumors.
This phase I trial studies the effects and best dose of ONC206 alone or in combination with radiation therapy in treating patients with diffuse midline gliomas that is newly diagnosed or has come back (recurrent) or other recurrent primary malignant CNS tumors. ONC206 is a recently discovered compound that may stop cancer cells from growing. This drug has been shown in laboratory experiments to kill brain tumor cells by causing a so called "stress response" in tumor cells. This stress response causes cancer cells to die, but without affecting normal cells. ONC206 alone or in combination with radiation therapy may be effective in treating newly diagnosed or recurrent diffuse midline gliomas and other recurrent primary malignant CNS tumors.
This study collects information on the side effects of proton therapy and detailed information on the proton therapy treatment plan itself. This may help researchers develop methods to predict the risk of side effects for future patients and learn the long-term benefit of proton therapy.