Search clinical trials by condition, location and status
In this clinical trial, investigators want to learn more about using non-opioid pain medications for children with acute respiratory failure. Right now, doctors give these children opioids to help with pain while they are on the ventilator, but investigators don't know if this is the best way to manage their pain. Even with strong doses of opioids, more than 90% of these children still feel pain. Other pain medicines, like acetaminophen (also called Tylenol) and ketorolac (also called Toradol), are available but aren't commonly used because we don't know if they help. The goal of this clinical trial is to test if acetaminophen and/or ketorolac can improve pain control and reduce the need for stronger pain medications (opioids) in these children. To learn more about this, participants will be randomly placed in one of four study treatment groups. This means that a computer will decide by chance which group each participant is in, not the doctors running the study. Each group will receive a combination of intravenous acetaminophen, ketorolac or a harmless substance called a placebo. In this clinical trial, placebos help investigators see if the actual medications (acetaminophen and ketorolac) work better than something that doesn't contain medicine. By comparing participants who get the real medicine with those who get the placebo, investigators can find out if these medications effectively decrease pain.
Ventilator associated events (VAE) is a quality metric defined by 48 hours of stability followed by 48 hours of escalation of ventilator settings within the ICU. VAE have been associated with poor outcomes and increases the cost of care, yet is not easy to avoid. Operationalizing all the standards of care known to improve outcomes of those requiring mechanical ventilation in the critical care environment requires a comprehensive approach. ICU teams are encouraged to follow best practice protocols to help liberate and prevent VAEs. Yet, compliance with protocols in most ICUs is suboptimal for multiple reasons. With the advent of computerized mechanical ventilators capable of streaming data from breath to breath and biomedical integration systems (BMDI) such as Capsule (UTMB's BMDI system), software systems have been developed to help identify variances in the standard of care. Automation in near real-time ventilator data feedback has been shown to reduce the incidences of VAEs. This quality improvement project will leverage Vyaire's Respiratory Knowledge Portal (RKP) to collect and store meaningful data regarding ventilator-associated events (VAE), alarm policy compliance, ventilator weaning, and lung protective analytics. Goals: 1. To collect quality metrics utilizing RKP from patients requiring mechanical ventilation over a 3-4-month period for a retrospective baseline analysis. 2. Provide the RKP tool to the ICU team to determine if the use of RKP's webportal and Messenger Zebra phone app improves quality of mechanical ventilation and outcomes. 3. To determine a return on investment (ROI) for a software system like RKP.
Effective respiratory ventilation is achieved by moving the right amount of air in and out of the lungs while keeping the pressures at a safe level. A disposable safety device, Adult Sotair®, was created to improve manual ventilation delivery. In this non-inferiority study, we will perform a pre-post study design (single group, within-group comparison) to test the non-inferiority of the Adult Sotair® device compared to mechanical ventilation.
This is a clinical trial to compare the oxygenation and ventilation performance between manual ventilation and mechanical ventilation when transporting cardiac patients to the ICU.
This study will look at whether accounting for the amount of pressure generated by the chest wall and abdomen in a obese patient, using a measurement called transpulmonary pressure, can help shorten the amount of time patients spend on the ventilator. By decreasing the amount of time patients spend on the ventilator, they are less likely to develop complications such as infections, weakness or more procedures.
The aim of this study is to identify and determine the levels of oxidized lipids and lipid mediators following exposure to oxygen supplementation during mechanical ventilation by oxidative lipidomics. The investigators will include patients with mechanical ventilation and have received FiO2=\>0.5 atleast 90 minutes and collected two sequential mini bronchoalveolar lavage on them 24 hours apart. Mass Spectrometry Lipid chromatography will be conducted and clinical data will be analyzed.
While most studies in the medical literature that indicate "music" as an intervention may recognize its impact and capacity to decrease pain perception, anxiety, and/or its role in the regulation of cardiac and respiratory function in ICU patients, no identifiable studies have implemented entrained live music therapy protocols into clinical trials. Music therapy treatment is a non-pharmacological intervention that is individually tailored to the patient's needs and focuses on the assessment and intervention of a specific music application that is provided by a certified music therapist. Entrained music therapy focuses on a dynamic interaction between the patient and music therapist in which the music therapist attempts to promote relaxation and comfort through the patient's identified Song of Kin (SOK). This study measures the effects of live music therapy entrained to the vital signs of adult patients on duration of mechanical ventilation.
One challenge with decision making for mechanically ventilated is that their prognosis is often uncertain. The ProVent-14 score incorporates clinical variables measured on the 14th day of mechanical ventilation to predict risk of death in one year. The ProVent-14 is easy to calculate has been externally validated. However, it is unclear how often clinicians use the ProVent-14 score to predict long-term outcomes for patients requiring 14 days of mechanical ventilation or if it helps clinicians make more accurate predictions. The purpose of this study is to determine whether ICU clinicians who receive a patient's ProVent-14 score make more accurate predictions for mortality at one year than ICU clinicians who do not.
The study's aim is to ascertain the best approach for providing sedation and pain management for patients who have sustained trauma and are requiring respiratory support from a mechanical ventilator. The common approach to patients who need mechanical ventilation is to provide continuous drips of sedatives and pain medicine and awaken the patient once a day to check the brain functions. Another approach is to provide pain medicine and reserve sedatives for only a short duration when needed. The difference between approaches has not been studied in Trauma patients.
Invasive mechanical ventilation is one of the most important and life-saving therapies in the intensive care unit (ICU). In most severe cases, extracorporeal lung support is initiated when mechanical ventilation is insufficient. However, mechanical ventilation is recognised as potentially harmful, because inappropriate mechanical ventilation settings in ICU patients are associated with organ damage, contributing to disease burden. Studies revealed that mechanical ventilation is often not provided adequately despite clear evidence and guidelines. Variables at the ventilator and extracorporeal lung support device can be set automatically using optimization functions and clinical recommendations, but the handling of experts may still deviate from those settings depending upon the clinical characteristics of individual patients. Artificial intelligence can be used to learn from those deviations as well as the patient's condition in an attempt to improve the combination of settings and accomplish lung support with reduced risk of damage.