Treatment Trials

Search clinical trials by condition, location and status

Free to JoinExpert SupportLatest Treatments

Filter & Search

Clinical Trial Results

Showing 1-10 of 22 trials for Medulloblastoma
Recruiting

GPC2-CAR T Cell Therapy for Relapsed or Refractory Medulloblastoma in Children and Young Adults

Palo Alto, California

This is a single-site, open-label Phase 1 clinical trial evaluating the feasibility, safety, and preliminary activity of autologous GPC2-targeted chimeric antigen receptor (CAR) T cells administered via intracerebroventricular (ICV) infusion in children and young adults with relapsed or refractory medulloblastoma or other eligible Central Nervous System (CNS) embryonal tumors.

Recruiting

Digoxin Medulloblastoma Study

Alabama · Birmingham, AL

The purpose of this study is to evaluate the efficacy of digoxin in treating relapsed non-SHH, non-WNT medulloblastoma in pediatric and young adult patients.

Recruiting

Molecular and Clinical Risk-Directed Therapy for Infants and Young Children With Newly Diagnosed Medulloblastoma

California · Palo Alto, CA

This is a multi-center, multinational phase 2 trial that aims to explore the use of molecular and clinical risk-directed therapy in treatment of children 0-4.99 years of age with newly diagnosed medulloblastoma.

Recruiting

Individualized Treatment Plan in Children and Young Adults With Relapsed Medulloblastoma and Ependymoma

California · Los Angeles, CA

The current study will use a new treatment approach based on the molecular characteristics of each participant's tumor. The study will test the feasibility in the pilot phase of performing real-time drug screening on tissue taken during surgery in patients with relapsed medulloblastoma or ependymoma and of having a specialized tumor board assign a treatment plan based on the results of this screening and genomic sequencing. The aim of this trial is to allow every child and young adult with relapsed medulloblastoma and ependymoma to receive the most effective and least toxic therapies currently available and will pave the way for improved understanding and treatment of these tumors in the future. Moreover, if successful, it could serve as a paradigm for personalized medicine programs for other types of cancer.

Recruiting

DFMO as Maintenance Therapy for Molecular High/Very High Risk and Relapsed Medulloblastoma

Arkansas · Little Rock, AR

Difluoromethylornithine (DFMO) will be used in an open label, multicenter, study as Maintenance Therapy for Molecular High Risk/Very High Risk and Relapsed/Refractory Medulloblastoma.

Recruiting

Antiangiogenic Therapy for Children with Recurrent Medulloblastoma, Ependymoma and ATRT

Illinois · Chicago, IL

Patients with relapsed medulloblastoma, ependymoma and ATRT have a very poor prognosis whether treated with conventional chemotherapy, high-dose chemotherapy with stem cell rescue, irradiation or combinations of these modalities. Antiangiogenetic therapy has emerged as new treatment option in solid malignancies. The frequent, metronomic schedule targets both proliferating tumor cells and endothelial cells, and minimizes toxicity. In this study the investigators will evaluate the use of biweekly intravenous bevacizumab in combination with five oral drugs (thalidomide, celecoxib, fenofibrate, and alternating cycles of daily low-dose oral etoposide and cyclophosphamide), augmented with alternating courses of intrathecal etoposide and cytarabine. The aim of the study is to extend therapy options for children with recurrent or progressive medulloblastoma, ependymoma and ATRT, for whom no known curative therapy exists, by prolonging survival while maintaining good quality of life. The primary objective of the MEMMAT trial is to evaluate the activity of this multidrug antiangiogenic approach in these heavily pretreated children and young adults. Additionally, progression-free survival (PFS), overall survival (OS), as well as feasibility and toxicity will be examined.

Recruiting

Fourth Ventricular Administration of Immune Checkpoint Inhibitor (Nivolumab) and Methotrexate or 5-Azacytidine for Recurrent Medulloblastoma, Ependymoma, and Other CNS Malignancies

Texas · Houston, TX

The goal of this clinical trial is to assess the safety, toxicity, and antitumor activity of fourth ventricular infusions of nivolumab plus 5-azacytidine for recurrent ependymoma and nivolumab plus methotrexate for recurrent medulloblastoma and other CNS malignancies. Additionally, the study will explore immunologic responses to nivolumab. The hypothesis is that local administration of nivolumab, an immune checkpoint inhibitor, is safe and will lead to even more robust treatment responses when administered following 5-azacytidine in patients with recurrent ependymoma or methotrexate in patients with medulloblastoma or other CNS tumors.

Recruiting

A Study of Treatment for Medulloblastoma Using Sodium Thiosulfate to Reduce Hearing Loss

Alabama · Birmingham, AL

This phase III trial tests two hypotheses in patients with low-risk and average-risk medulloblastoma. Medulloblastoma is a type of cancer that occurs in the back of the brain. The term, risk, refers to the chance of the cancer coming back after treatment. Subjects with low-risk medulloblastoma typically have a lower chance of the cancer coming back than subjects with average-risk medulloblastoma. Although treatment for newly diagnosed average-risk and low-risk medulloblastoma is generally effective at treating the cancer, there are still concerns about the side effects of such treatment. Side effects or unintended health conditions that arise due to treatment include learning difficulties, hearing loss or other issues in performing daily activities. Standard therapy for newly diagnosed average-risk or low-risk medulloblastoma includes surgery, radiation therapy, and chemotherapy (including cisplatin). Cisplatin may cause hearing loss as a side effect. In the average-risk medulloblastoma patients, this trial tests whether the addition of sodium thiosulfate (STS) to standard of care chemotherapy and radiation therapy reduces hearing loss. Previous studies with STS have shown that it may help reduce or prevent hearing loss caused by cisplatin. In the low-risk medulloblastoma patients, the study tests whether a less intense therapy (reduced radiation) can provide the same benefits as the more intense therapy. The less intense therapy may cause fewer side effects. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Cisplatin is in a class of medications known as platinum-containing compounds. It works by killing, stopping or slowing the growth of cancer cells. The overall goals of this study are to see if giving STS along with standard treatment (radiation therapy and chemotherapy) will reduce hearing loss in medulloblastoma patients and to compare the overall outcome of patients with medulloblastoma treated with STS to patients treated without STS on a previous study in order to make sure that survival and recurrence of tumor is not worsened.

Recruiting

PEP-CMV Vaccine Targeting CMV Antigen to Treat Newly Diagnosed Pediatric HGG and DIPG and Recurrent Medulloblastoma

Colorado · Aurora, CO

This study will address the question of whether targeting CMV antigens with PEP-CMV can serve as a novel immunotherapeutic approach in pediatric patients with newly-diagnosed high-grade glioma (HGG) or diffuse intrinsic pontine glioma (DIPG) as well as recurrent medulloblastoma (MB). PEP-CMV is a vaccine mixture of a peptide referred to as Component A. Component A is a synthetic long peptide (SLP) of 26 amino acid residues from human pp65. The SLPs encode multiple potential class I, class II, and antibody epitopes across several haplotypes. Component A will be administered as a stable water:oil emulsion in Montanide ISA 51. Funding Source - FDA OOPD

Recruiting

Immunotherapy for Malignant Pediatric Brain Tumors Employing Adoptive Cellular Therapy (IMPACT)

District of Columbia · Washington, DC

This is an open-label phase 1 safety and feasibility study that will employ multi-tumor antigen specific cytotoxic T lymphocytes (TSA-T) directed against proteogenomically determined personalized tumor-specific antigens (TSA) derived from a patient's primary brain tumor tissues. Young patients with embryonal central nervous system (CNS) malignancies typically are unable to receive irradiation due to significant adverse effects and are treated with intensive chemotherapy followed by autologous stem cell rescue; however, despite intensive therapy, many of these patients relapse. In this study, individualized TSA-T cells will be generated against proteogenomically determined tumor-specific antigens after standard of care treatment in children less than 5 years of age with embryonal brain tumors. Correlative biological studies will measure clinical anti-tumor, immunological and biomarker effects.