Search clinical trials by condition, location and status
The goal of the Dose Escalation phase of the study is to evaluate the safety, tolerability, pharmacokinetics (PK) and preliminary anti-tumor activity to determine the preliminary recommended dose for expansion (RDE) of NKT3964 in adults with advanced or metastatic solid tumors. The goal of the Expansion phase of the study is to evaluate the preliminary anti-tumor activity of NKT3964 at the RDEs based on objective response rate (ORR) and determine the preliminary recommended Phase 2 dose (RP2D).
This phase II trial tests how well CPI-613 (devimistat) in combination with hydroxychloroquine (HCQ) and 5-fluorouracil (5-FU) or gemcitabine works in patients with solid tumors that may have spread from where they first started to nearby tissue, lymph nodes, or distant parts of the body (advanced) or that have not responded to chemotherapy medications (chemorefractory). Metabolism is how the cells in the body use molecules (carbohydrates, fats, and proteins) from food to get the energy they need to grow, reproduce and stay healthy. Tumor cells, however, do this process differently as they use more molecules (glucose, a type of carbohydrate) to make the energy they need to grow and spread. CPI-613 works by blocking the creation of the energy that tumor cells need to survive, grow in the body and make more tumor cells. When the energy production they need is blocked, the tumor cells can no longer survive. Hydroxychloroquine is a drug used to treat malaria and rheumatoid arthritis and may also improve the immune system in a way that tumors may be better controlled. Fluorouracil is in a class of medications called antimetabolites. It works by killing fast-growing abnormal cells. Gemcitabine is a chemotherapy drug that blocks the cells from making DNA and may kill tumor cells. CPI-613 (devimistat) in combination with hydroxychloroquine and 5-fluorouracil or gemcitabine may work to better treat advanced solid tumors.
This phase Ib trial tests the safety, side effects, and best dose of tumor treating fields therapy in combination with either cabozantinib or nab-paclitaxel and atezolizumab in treating patients with solid tumors involving the abdomen or thorax that have spread to other parts of the body (advanced). Tumor treating fields therapy on this study utilizes NovoTTF systems that are wearable devices that use electrical fields at different frequencies that may help stop the growth of tumor cells by interrupting cancer cells' ability to divide. Cabozantinib is in a class of medications called kinase inhibitors. It works by blocking the action of an abnormal protein that signals tumor cells to multiply. This helps slow or stop the spread of tumor cells. Chemotherapy drugs, such as nab-paclitaxel, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving tumor treating fields therapy in combination with either cabozantinib, or with nab-paclitaxel and atezolizumab may help control advanced solid tumors involving the abdomen or thorax.
This phase II trial studies if talazoparib works in patients with cancer that may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced) and has mutation(s) in deoxyribonucleic acid (DNA) damage response genes who have or have not already been treated with another PARP inhibitor. Talazoparib is an inhibitor of PARP, a protein that helps repair damaged DNA. Blocking PARP may help keep cancer cells from repairing their damaged DNA, causing them to die. PARP inhibitors are a type of targeted therapy. All patients who take part on this study must have a gene aberration that changes how their tumors are able to repair DNA. This trial may help scientists learn whether some patients might benefit from taking different PARP inhibitors "one after the other" and learn how talazoparib works in treating patients with advanced cancer who have aberration in DNA repair genes.
This phase I trial studies the side effects of pressurized intraperitoneal aerosol chemotherapy (PIPAC) in treating patients with ovarian, uterine, appendiceal, stomach (gastric), or colorectal cancer that has spread to the lining of the abdominal cavity (peritoneal carcinomatosis). Chemotherapy drugs, such as cisplatin, doxorubicin, oxaliplatin, leucovorin, fluorouracil, mitomycin, and irinotecan, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. PIPAC is a minimally invasive procedure that involves the administration of intraperitoneal chemotherapy. The study device consists of a nebulizer (a device that turns liquids into a fine mist), which is connected to a high-pressure injector, and inserted into the abdomen (part of the body that contains the digestive organs) during a laparoscopic procedure (a surgery using small incisions to introduce air and to insert a camera and other instruments in the abdominal cavity for diagnosis and/or to perform routine surgical procedures). Pressurization of the liquid chemotherapy through the study device results in aerosolization (a fine mist or spray) of the chemotherapy intra-abdominally (into the abdomen). Giving chemotherapy through PIPAC may reduce the amount of chemotherapy needed to achieve acceptable drug concentration, and therefore potentially reduces side effects and toxicities.
The goals of this prospective, observational cohort study are to determine the feasibility of implementing paclitaxel therapeutic drug monitoring for cancer patients and explore the relationship between paclitaxel drug exposure and the development of neuropathic symptoms. This trial studies if paclitaxel can be consistently measured in the blood of patients with solid tumors undergoing paclitaxel treatment. Drugs used in chemotherapy, such as paclitaxel, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Nerve damage is one of the most common and severe side effects of paclitaxel. The ability to consistently measure paclitaxel in the blood may allow doctors to control the dose of paclitaxel, so that enough chemotherapy is given to kill the cancer, but the side effect of nerve damage is reduced.
Background: The NCI Surgery Branch has developed an experimental therapy that involves taking white blood cells from patients' tumors, growing them in the laboratory in large numbers, and then giving the cells back to the patient. These cells are called Tumor Infiltrating Lymphocytes, or TIL and we have given this type of treatment to over 200 patients with melanoma. Researchers want to know if TIL shrink s tumors in people with digestive tract, urothelial, breast, or ovarian/endometrial cancers. In this study, we are selecting a specific subset of white blood cells from the tumor that we think are the most effective in fighting tumors and will use only these cells in making the tumor fighting cells. Objective: The purpose of this study is to see if these specifically selected tumor fighting cells can cause digestive tract, urothelial, breast, or ovarian/endometrial tumors to shrink and to see if this treatment is safe. Eligibility: \- Adults age 18-72 with upper or lower gastrointestinal, hepatobiliary, genitourinary, breast, ovarian/endometrial cancer, or glioblastoma refractory to standard chemotherapy. Design: Work up stage: Patients will be seen as an outpatient at the NIH clinical Center and undergo a history and physical examination, scans, x-rays, lab tests, and other tests as needed. Surgery: If the patients meet all of the requirements for the study they will undergo surgery to remove a tumor that can be used to grow the TIL product. Leukapheresis: Patients may undergo leukapheresis to obtain additional white blood cells. (Leukapheresis is a common procedure, which removes only the white blood cells from the patient.) Treatment: Once their cells have grown, the patients will be admitted to the hospital for the conditioning chemotherapy, the TIL cells and aldesleukin. They will stay in the hospital for about 4 weeks for the treatment. Follow up: Patients will return to the clinic for a physical exam, review of side effects, lab tests, and scans about every 1-3 months for the first year, and then every 6 months to 1 year as long as their tumors are shrinking. Follow up visits will take up to 2 days. ...