Search clinical trials by condition, location and status
To learn if the combination of cladribine, cytarabine, venetoclax, and azacitidine can help to control higher-risk myelodysplastic syndrome (MDS) with excess blasts and/or higher-risk chronic myelomonocytic leukemia (CMML).
This research study is testing if Talazoparib is an effective treatment for patients with AML and MDS that have a mutation in the cohesin complex.
This phase I trial studies the side effects and best dose of TAK-243 in treating patients with acute myeloid leukemia or myelodysplastic syndromes with increased blasts that has come back (relapsed) or that is not responding to treatment (refractory). TAK-243 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
This is a Phase II study following subjects proceeding with our Institutional non-myeloablative cyclophosphamide/ fludarabine/total body irradiation (TBI) preparative regimen followed by a related, unrelated, or partially matched family donor stem cell infusion using post-transplant cyclophosphamide (PTCy), sirolimus and MMF GVHD prophylaxis.
The goal of this research study is to find the safest and most effective dose of the study drug, BXCL701, for the treatment of Acute Myeloid Leukemia (AML) or Myelodysplastic Syndrome (MDS). The names of the study drugs involved in this study are/is: * BXCL701
The main purpose of this study is to identify a safe and potentially effective dose of tuspetinib to be used in future studies in study participants diagnosed with acute myeloid leukemia (AML), myelodysplastic syndromes with increased blasts grade 2 (MDS-IB2), or chronic myelomonocytic leukemia (CMML) that is relapsed or refractory after at least one line of prior therapy, or in study participants with newly diagnosed AML. Tuspetinib will be administered as a single agent or in combination with other drugs (venetoclax or venetoclax plus azacitidine), as specified for each part of the study.
This phase II trial studies how well naive T-cell depletion works in preventing chronic graft-versus-host disease in children and young adults with blood cancers undergoing donor stem cell transplant. Sometimes the transplanted white blood cells from a donor attack the body's normal tissues (called graft versus host disease). Removing a particular type of T cell (naive T cells) from the donor cells before the transplant may stop this from happening.
This phase I/II trial studies the side effects and best dose of a radioactive agent linked to an antibody (211At-BC8-B10) followed by donor stem cell transplant in treating patients with high-risk acute leukemia or myelodysplastic syndrome that has come back (recurrent) or isn't responding to treatment (refractory). 211At-BC8-B10 is a monoclonal antibody that may interfere with the ability of cancer cells to grow and spread. Giving chemotherapy and total body irradiation before a stem cell transplant helps stop the growth of cells in the bone marrow, including normal blood-forming cells (stem cells) and cancer cells. When the healthy stem cells from a donor are infused into the patient, they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can attack the body's normal cells, called graft versus host disease. Giving cyclophosphamide, mycophenolate mofetil, and tacrolimus after a transplant may stop this from happening.
This phase II trial studies the side effects and how well azacitidine and enasidenib work in treating patients with IDH2-mutant myelodysplastic syndrome. Azacitidine and enasidenib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
This phase I/II trial studies the side effects and best dose of 211\^astatine(At)-BC8-B10 before donor stem cell transplant in treating patients with high-risk acute myeloid leukemia, acute lymphoblastic leukemia, myelodysplastic syndrome, or mixed-phenotype acute leukemia. Radioactive substances, such as astatine-211, linked to monoclonal antibodies, such as BC8, can bind to cancer cells and give off radiation which may help kill cancer cells and have less of an effect on healthy cells before donor stem cell transplant.