Treatment Trials

Search clinical trials by condition, location and status

Free to JoinExpert SupportLatest Treatments

Filter & Search

Clinical Trial Results

Showing 1-10 of 39 trials for Nervous-system-cancer
Recruiting

PLX038 in Primary Central Nervous System Tumors Containing MYC or MYCN Amplifications

Maryland · Bethesda, MD

Background: About 90,000 new cases of brain and spinal cord tumors are diagnosed annually in the United States. Most of these tumors are benign; however, about 30% are malignant, and 35% of people with malignant tumors in the brain and spinal cord will die within 5 years. Many of these people have changes in certain genes (MYC or MYCN) that drive the development of their cancers. Objective: To test a study drug (PLX038) in people with tumors of the brain or spinal cord. Eligibility: People aged 18 years or older with a tumor of the brain or spinal cord. Some participants must also have tumors with changes in the MYC or MYCN genes. Design: Participants will be screened. They will have a physical exam and blood tests. They will have imaging scans and a test of their heart function. They may need to have a biopsy: A sample of tissue will be removed from their tumor. PLX038 is given through a tube attached to a needle inserted into a vein in the arm. All participants will receive PLX038 on the first day of each 21-day treatment cycle. They will take a second drug 3 days later to help reduce the risk of infection; for this drug, participants will be shown how to inject themselves under the skin at home. Blood tests, imaging scans, and other tests will be repeated during study visits. Hair samples will also be collected during these visits. Some participants may have an additional biopsy. Study treatment will continue up to 7 months. Follow-up visits will continue every few months for up to 5 years.

Recruiting

Study of B7-H3, EGFR806, HER2, And IL13-Zetakine (Quad) CAR T Cell Locoregional Immunotherapy For Pediatric Diffuse Intrinsic Pontine Glioma, Diffuse Midline Glioma, And Recurrent Or Refractory Central Nervous System Tumors

Washington · Seattle, WA

This is a Phase 1 study of central nervous system (CNS) locoregional adoptive therapy with SC-CAR4BRAIN, an autologous CD4+ and CD8+ T cells lentivirally transduced to express to express combinations of B7-H3, EGFR806, HER2, and IL13-zetakine chimeric antigen receptors (CAR). CAR T cells are delivered via an indwelling catheter into the ventricular system in children and young adults with diffuse intrinsic pontine glioma (DIPG), diffuse midline glioma (DMG), and recurrent or refractory CNS tumors. A child or young adult meeting all eligibility criteria, including having a CNS catheter placed into their ventricular system, and meeting none of the exclusion criteria will have their T cells collected. The T cells will then be bioengineered into a second-generation CAR T cell that target B7H3, EGFR806, HER2, and IL13-zetakine on tumor cells. Patients will be assigned to 1 of 2 treatment Arms based on the type of their tumor: * Arm A is for patients with DIPG (meaning primary disease localized to the pons, metastatic disease is allowed) anytime after standard radiation OR after progression. * Arm B is for patients with non-pontine DMG (meaning DMG in other parts of the brain such as the thalamus or spine) anytime after standard radiation OR after progression. This Arm also includes other recurrent/refractory CNS tumors.

Recruiting

Phase I Study of Oral ONC206 in Recurrent and Rare Primary Central Nervous System Neoplasms

Maryland

The primary objective of this Phase 1, open-label, dose-escalation, and exploratory study is to evaluate the safety and tolerability profile (establish the maximum-tolerated dose) and evaluate the occurrence of dose-limiting toxicities (DLTs) following single weekly or multiple-day weekly dose regimens of single-agent, oral ONC206 in patients with recurrent, primary central nervous system (CNS) neoplasms.

Recruiting

Study of B7-H3-Specific CAR T Cell Locoregional Immunotherapy for Diffuse Intrinsic Pontine Glioma/Diffuse Midline Glioma and Recurrent or Refractory Pediatric Central Nervous System Tumors

Washington · Seattle, WA

This is a Phase 1 study of central nervous system (CNS) locoregional adoptive therapy with autologous CD4+ and CD8+ T cells lentivirally transduced to express a B7H3-specific chimeric antigen receptor (CAR) and EGFRt. CAR T cells are delivered via an indwelling catheter into the tumor resection cavity or ventricular system in children and young adults with diffuse intrinsic pontine glioma (DIPG), diffuse midline glioma (DMG), and recurrent or refractory CNS tumors. A child or young adult meeting all eligibility criteria, including having a CNS catheter placed into the tumor resection cavity or into their ventricular system, and meeting none of the exclusion criteria, will have their T cells collected. The T cells will then be bioengineered into a second-generation CAR T cell that targets B7H3-expressing tumor cells. Patients will be assigned to one of 3 treatment arms based on location or type of their tumor. Patients with supratentorial tumors will be assigned to Arm A, and will receive their treatment into the tumor cavity. Patients with either infratentorial or metastatic/leptomeningeal tumors will be assigned to Arm B, and will have their treatment delivered into the ventricular system. The first 3 patients enrolled onto the study must be at least 15 years of age and assigned to Arm A or Arm B. Patients with DIPG will be assigned to Arm C and have their treatment delivered into the ventricular system. The patient's newly engineered T cells will be administered via the indwelling catheter for two courses. In the first course patients in Arms A and B will receive a weekly dose of CAR T cells for three weeks, followed by a week off, an examination period, and then another course of weekly doses for three weeks. Patients in Arm C will receive a dose of CAR T cells every other week for 3 weeks, followed by a week off, an examination period, and then dosing every other week for 3 weeks. Following the two courses, patients in all Arms will undergo a series of studies including MRI to evaluate the effect of the CAR T cells and may have the opportunity to continue receiving additional courses of CAR T cells if the patient has not had adverse effects and if more of their T cells are available. The hypothesis is that an adequate amount of B7H3-specific CAR T cells can be manufactured to complete two courses of treatment with 3 or 2 doses given on a weekly schedule followed by one week off in each course. The other hypothesis is that B7H3-specific CAR T cells can safely be administered through an indwelling CNS catheter or delivered directly into the brain via indwelling catheter to allow the T cells to directly interact with the tumor cells for each patient enrolled on the study. Secondary aims of the study will include evaluating CAR T cell distribution with the cerebrospinal fluid (CSF), the extent to which CAR T cells egress or traffic into the peripheral circulation or blood stream, and, if tissues samples from multiple timepoints are available, also evaluate disease response to B7-H3 CAR T cell locoregional therapy.

Recruiting

Feasibility of Intraoperative Microdialysis During Neurosurgery for Central Nervous System Malignancies

Minnesota · Rochester, MN

This clinical trial evaluates the use of microdialysis catheters during surgery to collect biomarkers, and studies the feasibility of intraoperative microdialysis during neurosurgery for central nervous system malignancies. A biomarker is a measurable indicator of the severity or presence of disease state. Information collected in this study may help doctors to develop new strategies to better diagnose, monitor, and treat brain tumors.

Recruiting

Computer-based Neurocognitive Assessment in Children With Central Nervous System Tumors Receiving Proton Beam Radiation Therapy

Missouri · Saint Louis, MO

This study will explore neurocognitive performance in pediatric brain tumor patients receiving proton beam radiation therapy (PBRT). The investigators goal is to gather baseline neurocognitive testing prior to the completion of the first week of radiation therapy along with follow-up testing 6-12 months after the completion of radiation and serial annual testing thereafter. With these data the investigators plan to evaluate the effects of PBRT on neurocognitive performance as it relates to patients' age at diagnosis, tumor location, and radiation dose. Modeling studies have demonstrated that PBRT could improve neurocognitive outcomes, but there is a paucity of prospectively-collected patient data. The investigators are uniquely positioned to address this important question given the busy pediatric central nervous system (CNS) tumor service, the delivery of proton therapy at the S. Lee Kling Proton Therapy Center at Barnes-Jewish Hospital, and the multi-disciplinary research team with extensive experience into the late effects of therapy as it relates to neurocognition.

Recruiting

Patient and Caregiver Priorities in Neuro-oncology Care

Minnesota · Rochester, MN

This study is being done to identify patient and caregiver burdens regarding their experience with diagnosis and treatment of CNS tumors. These results will help doctors find areas where patients and caregivers may need more support.

Recruiting

Study of Human Brain-Gut Axis and Gut Microbiome in Patients With Brain Lesions - Repository for Neuroscience Research

Jacksonville, Florida

This study explores how microorganisms in the gut can affect the growth and progression of brain tumors.

Recruiting

Somatic Mosaicism in Twins Discordant for Childhood Cancer

Minnesota · Minneapolis, MN

Somatic mosaicism in cancer associated genes is one potential explanation for discordance in childhood cancer that has not been fully explored to date. This pilot study will focus on twins with central nervous system (CNS) tumors who are identified through the Children's Oncology Group's Project: EveryChild (PEC) registry or volunteer.

Recruiting

Brain Slice Explants to Predict Drug Response in Brain Tumors

North Carolina · Chapel Hill, NC

This biospecimen collection study will evaluate the feasibility of engrafting and testing resected Central nervous system (CNS) tumors tumor tissue ex vivo to estimate drug response, in pediatric and adult subjects. CNS tumors display remarkable heterogeneity and unfortunately there are no reliable precision oncology platforms that can identify the most effective therapy for each patient. Recent work has demonstrated the success of functional precision oncology platforms using patient-derived explant (PDE) at predicting drug response in various cancers. Since PDEs maintain important aspects of tumor heterogeneity they may prove effective as functional models for CNS tumors. The purpose of this study is to explore the feasibility of using a novel PDE platform to generate drug sensitivity scores from patients with central nervous system tumors in Pediatric and adult subjects having low- or high-grade CNS tumors resected. The secondary objective is to estimate the proportion of successfully scaled PDEs generated per given tumor size.