Search clinical trials by condition, location and status
This is a study to evaluate the effects of CST-3056 on orthostatic symptoms and signs in subjects with neurogenic orthostatic hypotension (nOH).
The objective of this study is to find a more objective and accurate way to assess the efficacy of the treatment for neurogenic orthostatic hypotension. For this purpose, the investigators will use an activity monitor to determine the amount of time patients spend in the upright position (standing and walking; upright time) during 1 week of placebo (a pill with no active ingredients) and 1 week of their regular medication for orthostatic hypotension (midodrine or atomoxetine at their usual doses). Total upright time (i.e. tolerance to standing and walking) will be compared between placebo and active treatment to test the hypothesis that it can be used to assess the efficacy of the treatment for orthostatic hypotension and whether this outcome is superior to the assessment of symptoms using validated questionnaires.
The purpose of this study is to learn more about the effects of abdominal compression and the medication midodrine, two interventions used for the treatment of orthostatic hypotension (low blood pressure on standing), on hemodynamic markers of cardiovascular risk. The study will be conducted at the Vanderbilt University Medical Center and consists of a screening and 2 testing days, one with abdominal compression and one with midodrine. The total length of the study will be about 5 days.
This study aims to learn about the effects of continuous positive airway pressure (CPAP) on people with autonomic failure and high blood pressure when lying down (supine hypertension) to determine if it can be used to treat their high blood pressure during the night. CPAP (a widely used treatment for sleep apnea) involves using a machine that blows air into a tube connected to a mask covering the nose, or nose and mouth, to apply a low air pressure in the airways. The study includes 3-5 days spent in the Vanderbilt Clinical Research Center (CRC): at least one day of screening tests, followed by up to 3 study days. Subjects may be able to participate in daytime and/or overnight studies. The Daytime study consists of 2 study days: one with active CPAP and one with sham CPAP applied for up to 2 hours. The Overnight study consists of 3 study nights: one with active CPAP, one with sham CPAP, both applied for up to 9 hours and one night sleeping with the bed tilted head-up.
Synucleinopathies are a group of rare diseases associated with worsening neurological deficits and the abnormal accumulation of the protein α-synuclein in the nervous system. Onset is usually in late adulthood at age 50 or older. Usually, synucleinopathies present clinically with slowness of movement, coordination difficulties or mild cognitive impairment. Development of these features indicates that abnormal alpha-synuclein deposits have destroyed key areas of the brain involved in the control of movement or cognition. Patients with synucleinopathies and signs of CNS-deficits are frequently diagnosed with Parkinson disease (PD), dementia with Lewy bodies (DLB) or multiple system atrophy (MSA). However, accumulation of alpha-synuclein and death of nerve cells can also begin outside the brain in the autonomic nerves. In such cases, syncucleinopathies present first with symptoms of autonomic impairment (unexplained constipation, urinary difficulties, and sexual dysfunction). In rare cases, hypotension on standing (a disorder known as orthostatic hypotension) may be the only clinical finding. This "pre-motor" autonomic stage suggests that the disease process may not yet have spread to the brain. After a variable period of time, but usually within 5-years, most patients with abnormally low blood pressure on standing develop cognitive or motor abnormalities. This stepwise evolution indicates that the disease spreads from the body to the brain. Another indication of this spread is that acting out dreams (i.e., REM sleep behavior disorder, RBD) a problem that occurs when the lower part of the brain is affected, may also be the first noticeable sign of Parkinson disease. The purpose of this study is to document the clinical features and biological markers of patients with synucleinopathies and better understand how these disorders evolve over time. The study will involve following patients diagnosed with a synucleinopathy (PD/DLB and MSA) and those believed to be in the "pre-motor" stage (with isolated autonomic impairment and/or RBD). Through a careful series of follow-up visits to participating Centers, we will focus on finding biological clues that predict which patients will develop motor/cognitive problems and which ones have the resilience to keep the disease at bay preventing spread to the brain. We will also define the natural history of MSA - the most aggressive of the synucleinopathies.