Search clinical trials by condition, location and status
The purpose of this research is to determine the feasibility of an uneven terrain walking program for lower limb prosthesis users. The training is designed to induce step-to-step variability during walking within a safe environment, with the aim of improving walking skill and confidence.
Special Operations Forces (SOF) train continually to maintain peak performance. Thus, they are nearly always in a state of recovery, and in need of noninvasive therapies to address the taxing workload. Photobiomodulation therapy (PBMT) is a noninvasive treatment where a low-level laser is applied to the body to enhance healing, recovery, and performance. Army Tactical Human Optimization Rapid Rehabilitation and Reconditioning (THOR3) provides a consistent avenue for implementation of PBMT as a modality. Studies in athletes have shown performance and recovery benefits with pre-and post-workout focal application of PBMT. While there is less evidence on the potential cognitive/behavioral effects of a systematic application of PBMT, self-reported fatigue has also been found to be significantly lower in groups with focal PBMT application as compared to placebo. Further, PBMT research in healthy military tactical athletes is limited. PBMT may be a promising tool for enhancing physical performance by accelerating musculoskeletal and psychological recovery in the SOF population. The investigators aim to study the physiologic and behavioral effects of PBMT application post-exercise on performance in SOF Operators. The Intent: The investigators propose to conduct a single-blinded randomized-control trial with sham control to investigate the effectiveness of providing PBMT post physical training in a SOF population. The specific aims of this study are to: 1. Analyze and describe the physiologic effects, if any, of PBMT application post-exercise in Special Forces Operators undergoing coach-led training. 2. Analyze and describe the behavioral effects, if any, of PBMT application post-exercise in Special Forces Operators undergoing coach-led training. 3. Evaluate the overall clinical utility of focal PBMT subsequent to physical training in a US Army SOF, tactical athlete population.
Crews of future long-duration exploration missions will have to cope with a wide range of stressors that present significant challenges for maintaining optimal performance. Crews will have to operate under conditions of high workload, reduced sleep and circadian dysregulation, limited sensory stimulation, confinement and extended separation from family and friends, and communication delays isolating them from real-time interaction with ground support, which may be particularly critical in the event of emergencies. These factors present significant risks to optimal cognitive/behavioral functioning and performance, across individuals and teams, and such challenges will only increase in criticality as human exploration moves beyond Earth's orbit to targets such as the Moon and Mars. To help mitigate these risks, Massachusetts General Hospital, along with collaborators at the Massachusetts Institute of Technology, will investigate a novel, personalized and scalable, closed-loop platform technology for on-board behavioral health management-one which adapts the local working environment to optimize performance based on biosensor feedback.