Search clinical trials by condition, location and status
This research study aims to evaluate the safety and determine the optimal dose of a new experimental drug, vvDD-hIL2 (vaccinia virus double-deleted human interleukin 2), in patients with advanced abdominal cancer. The study will involve three dose levels, with three to six patients enrolled at each level. vvDD-hIL2 is a genetically modified vaccinia virus, derived from the virus previously used for smallpox vaccination. The modification is intended to target and destroy tumors while minimizing harm to healthy tissues by stimulating the body's immune response. Participants will receive an injection of vvDD-hIL2 directly into their abdominal tumors at AHN West Penn. The study team will monitor for side effects and assess tumor response to the treatment. Active participation will last up to two months, involving seven clinic visits and approximately four lab visits at AHN West Penn Hospital. Visits will include standard of care procedures as well as study-specific tests and exams. Most visits will last one to two hours, with some extending to two to three hours. The drug administration day will require a twelve-hour visit. Effectiveness and side effects will be evaluated through blood draws, oral swabs, urinalysis and tissue biopsies. Tissue samples will be used for genomic analysis and stored for potential future research. Data collected may also be used for future research purposes. Previous human trials of vvDD-hIL2 have reported side effects such as pain, rash or inflammation at the injection site, low-grade fevers, flu-like symptoms, and fatigue. There is a rare risk of rash transmission to close contacts with skin openings, and information on limiting contact and managing rash development will be provided.
This is a randomized, adaptive, open label, multicenter trial to evaluate the safety and efficacy of intraperitoneal (IP) IMNN-001 plus chemotherapy compared to chemotherapy alone.
This phase II trial compares the effect of folate receptor alpha dendritic cells (FRαDCs) to placebo in treating patients with stage III or IV ovarian, fallopian tube or primary peritoneal cancer. FRαDCs, a dendritic cell vaccine, is made from a person's white blood cells. The white blood cells are treated in the laboratory to make dendritic cells (a type of immune cell) mixed with folate receptor alpha (FRalpha), a protein found in high levels on ovarian tumor cells. FRαDCs work by boosting the immune system to recognize and destroy the tumor cells by targeting the FRalpha protein on the tumor cell. Placebo is an inactive substance that looks the same as, and is given the same way as, the active drug or treatment being tested. The effects of the active drug are compared to the effects of the placebo. Giving FRαDCs may work better in preventing or delaying recurrence compared to placebo in patients with stage III or IV ovarian, fallopian tube, or primary peritoneal cancer.
This is a single center Phase I clinical trial of FT536 administered intraperitoneally (IP) 3 times a week for one week for the treatment of recurrent gynecologic cancers. A short course of outpatient lymphodepleting chemotherapy is given prior to the first dose of FT536 to promote adoptive transfer.
This is a 1:1 randomized, open label, multi-center phase I/II trial to evaluate the safety, dosing, efficacy, and biological activity of adding IMNN-001 to chemotherapy + BEV compared to chemotherapy + BEV alone.
This trial will treat patients with platinum resistant ovarian, fallopian tube or primary peritoneal cancer as defined by a progression free interval within six months of completion of most recent platinum-based treatment with a combination of vismodegib and atezolizumab. Despite recent improvements in treatment of ovarian cancer with the introduction of PARP inhibitors, response rates to therapy in the platinum resistant setting remain dismal with response rates of only 10-20% reported for single agent cytotoxic therapies. Given the poor prognosis and limited treatment options for these patients, this population is considered appropriate for trials of novel therapeutic candidates.
GLORIOSA is a Phase 3 multicenter, open label study designed to evaluate the safety and efficacy of mirvetuximab Soravtansine + Bevacizumab as maintenance therapy in participants with platinum-sensitive ovarian, primary peritoneal or fallopian tube cancers with high folate receptor-alpha (FRα) expression.
This phase I trial studies the side effects of hyperthermic intraepithelial chemotherapy with cisplatin after surgery or cisplatin before surgery in treating patients with stage III or IV ovarian, fallopian tube or peritoneal cancer receiving chemotherapy before surgery. Hyperthermic intraepithelial chemotherapy involves the infusion of heated cytotoxic chemotherapy that circulates into the abdominal cavity at the time of surgery. Chemotherapy drugs, such as cisplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving hyperthermic intraepithelial chemotherapy with cisplatin after surgery or cisplatin before surgery may kill more tumor cells compared to usual care.
This is a multi-part Phase 2 study to evaluate the efficacy and safety of azenosertib (ZN-c3) in subjects with Platinum-Resistant, High-Grade Serous Ovarian, Fallopian Tube, or Primary Peritoneal Cancer. Part 2 of the study will be conducted in subjects whose tumors are Cyclin E1 positive as determined by central review using the Sponsor's investigational clinical trial assay.
This phase II trial studies the effect of APL-2 when given in combination with either pembrolizumab or pembrolizumab and bevacizumab compared with bevacizumab alone in treating patients with ovarian, fallopian tube, or primary peritoneal cancer that has come back (recurrent) and a buildup of fluid and cancer cells (malignant effusion). APL-2 may limit tumor progression, decrease malignant effusion production, and improve the immune system's response against cancer cells. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Bevacizumab is a monoclonal antibody that may interfere with the ability of tumor cells to grow and spread. Giving APL-2 together with either pembrolizumab or pembrolizumab and bevacizumab may work better in treating patients with ovarian, fallopian tube, or primary peritoneal cancer and malignant effusion compared to bevacizumab alone.