Search clinical trials by condition, location and status
The purpose of this study is to learn more about LP-118 (an experimental drug) and its side effects and decide on acceptable doses. The purpose of this study is to determine if LP-118 can be given safely with another medicine called ponatinib, that is FDA-approved for the treatment of acute lymphoblastic leukemia.
With this research study has following goals * To confirm the highest tolerable dose of palbociclib in combination with chemotherapy is safe and well-tolerated. * To learn more about side effects of palbociclib in combination with chemotherapy; * To learn more about the biological effects of palbociclib on the cells in your body
This phase II trial studies how well blinatumomab, methotrexate, cytarabine, and ponatinib work in treating patients with Philadelphia chromosome (Ph)-positive, or BCR-ABL positive, or acute lymphoblastic leukemia that has come back or does not respond to treatment. Immunotherapy with monoclonal antibodies, such as blinatumomab, may induce changes in body's immune system and may interfere with the ability of tumor cells to grow and spread. Drugs used in chemotherapy, such as methotrexate and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Ponatinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving blinatumomab, methotrexate, cytarabine, and ponatinib may work better in treating patients with acute lymphoblastic leukemia.
This phase II trial studies the side effects and how well combination chemotherapy works in treating patients with acute lymphoblastic leukemia, lymphoblastic lymphoma, Burkitt lymphoma/leukemia, or double-hit lymphoma/leukemia that has come back or does not respond to treatment. Drugs used in chemotherapy, such as clofarabine, etoposide, cyclophosphamide, vincristine sulfate liposome, dexamethasone and bortezomib, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.
The body has different ways of fighting infection and disease. No single way is effective at fighting cancer. This research study combines two different ways of fighting disease: antibodies and T cells. Antibodies are proteins that protect the body from disease caused by bacteria or toxic substances. Antibodies work by binding those bacteria or substances, which stops them from growing and causing bad effects. T cells, also called T lymphocytes, are special infection-fighting blood cells that can kill other cells, including tumor cells or cells that are infected. Both antibodies and T cells have been used to treat patients with cancers. They both have shown promise, but neither alone has been sufficient to cure most patients. This study combines both T cells and antibodies to try to create a more effective treatment. This investigational treatment is called autologous T lymphocyte chimeric antigen receptor cells targeted against the CD19 antigen (ATLCAR.CD19) administration. In previous studies, it has been shown that a new gene can be put into T cells that will increase their ability to recognize and kill cancer cells. A gene is a unit of DNA. Genes make up the chemical structure carrying the genetic information that may determine human characteristics (i.e., eye color, height and sex). The new gene that is put in the T cells makes a piece of an antibody called anti-CD19. This antibody can flow through the blood and can find and stick to leukemia cells because these leukemia cells have a substance on their surface called CD19. Anti-CD19 antibodies have been used to treat people with leukemia but have not been strong enough to cure most patients. For this study, the anti-CD19 antibody has been changed so that instead of floating free in the blood a piece of it is now joined to the surface of the T cells. Only the part of the antibody that sticks to the leukemia cells is attached to the T cells instead of the entire antibody. When an antibody is joined to a T cell in this way it is called a chimeric receptor. These CD19 chimeric (combination) receptor-activated T cells kill some of the tumor, but they do not last very long in the body and so their chances of fighting the cancer are unknown. Preliminary results of giving ATLCAR.CD19 cells to leukemia patients have been encouraging; however, many subjects receiving this treatment have experienced unwanted side effects including neurotoxicity and/or cytokine release syndrome (also referred to as cytokine storm or an infusion reaction). Cytokines are small proteins that interreact as e signals to other cells and are the way cells talk to one another. During cytokine release syndrome, too many cytokines are released and too many cells in your body react to their release. Symptoms resulting from cytokine release syndrome vary from flu-like symptoms to more severe side effects such as cardiac arrest, multi-system organ failure or death. We predict that about 50% of patients on this study will experience mild to severe cytokine release syndrome. To help reduce cytokine release syndrome symptoms in future patients, a safety switch has been added to the ATLCAR.CD19 cells that can cause the cells to become dormant or "go to sleep". The safety switch is called inducible caspase 9 or iC9. The modified ATLCAR.CD19 cells with the safety switch are referred to as iC9-CAR19 cells. The purpose of this study is to determine whether receiving the iC9-CAR19 cells is safe and tolerable (there are not too many unwanted effects). Researchers has previously tested different doses of the iC9-CAR19. An effective dose that had the least number of unwanted side effects in patients was identified. It was planned to test this dose in more patients to learn more about its effect in the body. This type of research study is called a dose expansion study. It will allow the investigators to collect more information about the effect of this dose in treating of certain type of cancer.
This research study is studying a medication called Venetoclax and a chemotherapy regimen as a possible treatment for Acute Lymphoblastic Leukemia. The drugs involved in this study are: * Venetoclax * Standard Chemotherapy (which includes cyclophosphamide, vincristine, doxorubicin, dexamethasone, methotrexate, 6-mercaptopurine, etoposide, and cytarabine
CAR19PK is a research study evaluating the use of lymphodepleting chemotherapy and chimeric antigen receptor (CAR) T cell therapy, a type of cellular therapy, for the treatment of refractory and/or relapsed leukemia. For this type of therapy, peripheral (circulating) immune cells are collected and then modified so that they can recognize an antigen, which is a particle present on the surface of a cancer cell. The CD19-CAR T cell product will be manufactured at the St. Jude Children's Research Hospital's Good Manufacturing Practice (GMP) facility. The main purpose of this study is to determine: * Evaluate different doses of fludarabine prior CAR T cell infusion * How your body processes fludarabine and cyclophosphamide, * How long the CAR T cells last in the body, * Whether or not treatment with this therapy is effective in treating people with refractory or relapsed leukemia, and * The side effects of this therapy.
This phase Ib trial tests the safety, side effects, and effectiveness of humanized (hu)CD19-chimeric antigen receptor (CAR) T cell therapy in treating patients with CD19 positive B-cell acute lymphoblastic leukemia (ALL) that has come back after a period of improvement (relapsed) or that has not responded to previous treatment (refractory). CAR T-cell therapy is a treatment in which a patient's T cells (a type of immune system cell) are changed in the laboratory so they will attack cancer cells. T cells are taken from a patient's blood. Then the gene for a special receptor that binds to a certain protein, such as CD19, on the patient's cancer cells is added to the T cells in the laboratory. The special receptor is called a chimeric antigen receptor (CAR). Large numbers of the huCD19 positive CAR T cells are grown in the laboratory and given to the patient by infusion for treatment of certain cancers. Chemotherapy drugs, such as fludarabine and cyclophosphamide, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. huCD19-CAR T cell therapy may be safe, tolerable and effective in treating patients with relapsed or refractory CD19 positive ALL.
Participants will have a sample of their white blood cells, called T cells, collected using a procedure called leukapheresis. The collected T cells will be sent to a laboratory to be changed (modified) to become 19-28z/IL-18, the CAR T-cell therapy that participants will receive during the study. Making the participants' study therapy will take about 2-4 weeks.
This phase I trial tests the safety, side effects and best infusion dose of genetically engineered cells called anti-CD19/CD20/CD22 chimeric antigen receptor (CAR) T-cells following a short course of chemotherapy with cyclophosphamide and fludarabine in treating patients with lymphoid cancers (malignancies) that have come back (recurrent) or do not respond to treatment (refractory). Lymphoid malignancies eligible for this trial are: non-Hodgkin lymphoma (NHL), acute lymphoblastic leukemia (ALL), chronic lymphocytic leukemia (CLL), and B-prolymphocytic leukemia (B-PLL). T-cells (a type of white blood cell) form part of the body's immune system. CAR-T is a type of cell therapy that is used with gene-based therapies. CAR T-cells are made by taking a patient's own T-cells and genetically modifying them with a virus so that they are recognized by a group of proteins called CD19/CD20/CD22 which are found on the surface of cancer cells. Anti-CD19/CD20/CD22 CAR T-cells can recognize CD19/CD20/CD22, bind to the cancer cells and kill them. Giving combination chemotherapy helps prepare the body before CAR T-cell therapy. Giving CAR-T after cyclophosphamide and fludarabine may kill more tumor cells.