Search clinical trials by condition, location and status
This research is being done to investigate a treatment regimen of Irinotecan, Temozolomide, and Sargramostin, and an immunotherapy called Naxitamab and whether giving Naxitamab more slowly reduces the side effects for participants with relapsed or refractory neuroblastoma. The name of the study drugs involved in this study are: * Naxitamab (A type of monoclonal antibody) * Irinotecan (A standard of care chemotherapy) * Temozolomide (A standard of care chemotherapy) * Sargramostim (A standard of care, granulocyte-macrophage colony stimulating factor)
Background: Neuroblastoma is a type of cancer that causes tumors in nerves. It affects mainly infants and toddlers, and it causes about 15 percent of cancer-related deaths in children. Objective: To test a new drug (rhIL-15), combined with 3 standard cancer drugs, in people with neuroblastoma. Eligibility: People aged 3 to 35 years with neuroblastoma that did not respond or returned after standard treatment. Design: Participants will be screened. They will have a physical exam with blood and urine tests. They will have imaging scans and tests of their heart and lungs. They will have a bone marrow biopsy: A sample of tissue and fluid from inside a bone will be removed with a large needle. Participants will be treated in 21-day cycles. They may have up to 4 treatment cycles. rhIL-15 is given through a needle into a vein over 5 to 7 days during the first week of each cycle. Participants will stay in the hospital while they are receiving the rhIL-15. Starting in the second week of the second cycle, participants will receive other drugs for treating cancer. They will have no study treatments during the third week of each cycle. Participants will visit the clinic at least 2 times a week throughout all 4 treatment cycles. They will have a physical exam and blood tests during these visits. Imaging scans, bone marrow biopsy, and other tests will be repeated at the end of cycles 2 and 4. Participants will have a follow-up visit 6 months after treatment ends. This visit will include a physical exam with blood and urine tests.
The purpose of this study is to evaluate the investigational drug, tipifarnib (a pill taken by mouth), in combination with the Food and Drug Administration (FDA) approved drug, naxitimab, administered intravenously (IV; a liquid that continuously goes into your body through a tube that has been placed during a surgery into one of your veins). Naxitamab is FDA approved for pediatric patients 1 year of age and older and adult patients with relapsed or refractory high-risk neuroblastoma in the bone or bone marrow who have demonstrated a partial response, minor response, or stable disease to prior therapy, it may not be approved in the type of disease used in this study. The goals of this part of the study are: * Test the safety and tolerability of tipifarnib in combination with naxitimab in patients with cancer * To determine the activity of study treatments chosen based on: * How each subject responds to the study treatment * How long a subject lives without their disease returning/progressing
This is a first in human dose escalation trial to determine the safety of administering GPC2 CAR T cells in patients with advanced neuroblastoma.
The goal of this clinical trial is to determine the maximum tolerated dose (MTD) and recommended Phase II dose (RP2D) of allogeneic expanded γδ T cells when delivered with Dinutuximab, temozolomide, irinotecan, and zoledronate in children with refractory or recurrent neuroblastoma or refractory/ relapsed osteosarcoma as well as to define the toxicities of allogeneic expanded γδ T cells when delivered with Dinutuximab, temozolomide, irinotecan, and zoledronate
Difluoromethylornithine (DFMO) will be used in an open label, multicenter, study in combination with etoposide for subjects with relapsed/refractory neuroblastoma.
The body has different ways of fighting infections and disease. No single way seems perfect for fighting cancer. This research study combines two different ways of fighting disease: antibodies and T cells. Antibodies are molecules that fight infections and protect your body from diseases caused by bacteria and toxic substances. Antibodies work by sticking to those bacteria or substances, which stops them from growing and causing bad effects. T cells are special infection-fighting blood cells that can kill other cells, including tumor cells or cells that are infected. Both antibodies and T cells have been used to treat patients with cancers. They both have shown promise, but neither alone has been enough to cure most patients. This multicenter study is designed to combine both T cells and antibodies in order to create a more effective treatment. The treatment that is being researched is called autologous T lymphocyte chimeric antigen receptor cells (CAR) cells targeted against the disialoganglioside (GD2) antigen that express Interleukin (IL)-15, and the inducible caspase 9 safety switch (iC9), also known as iC9.GD2.CAR.IL-15 T cells.
The purpose of this research study is to find how active and safe 131 I-MIBG is in patients with resistant neuroblastoma, malignant pheochromocytoma and malignant paraganglioma.
This is a first in human dose escalation trial to determine the safety of administering PHOX2B PC-CAR T cells in patients with advanced, high-risk neuroblastoma.
This Phase 1/2 trial aims to determine the safety and feasibility of administration of autologous chimeric antigen receptor (CAR) T cells targeting the human Anaplastic Lymphoma Kinase (ALK) receptor in pediatric subjects with relapsed or refractory neuroblastoma (NB). The trial will be conducted in two phases: Phase 1 will determine the maximum tolerated dose (MTD) of autologous hALK.CAR T cells using a 3+3 dose escalation design. Phase 2 will be an expansion phase to determine rates of response to hALK.CAR T cells.