Search clinical trials by condition, location and status
The researchers will examine functional neural correlates that differentiate between laryngeal dystonia and voice tremor and contribute to disorder-specific pathophysiology using a cross-disciplinary approach of multimodal brain imaging.
The researchers will systematically evaluate current and novel clinical voice assessment tools and measures to elucidate distinct clinical phenotypes of those with laryngeal dystonia and voice tremor.
The goals of this project are 1) to determine the incidence of neurological voice disorders in patients with dystonia and essential tremor undergoing deep brain stimulation (DBS), 2) investigate the neuroimaging and intracranial neurophysiology correlates of voice dysfunction in these subjects, and subsequently 3) determine the effects of DBS on voice function.
Botox injections into the thyroarytenoid muscle are a predictable and effective treatment for SD, but typically result in transient symptoms of voice weakness and breathiness during the first 2-3 weeks after injection. Investigators hypothesize that voice weakness and breathiness after Botox treatment can be alleviated using amifampridine.
The contribution of genetic risk factors to the development of focal dystonias is evident. However, understanding of how variations in the causative gene expression lead to variations in brain abnormalities in different phenotypes of dystonia (e.g., familial, sporadic) remains limited. The research program of the investigators is set to determine the relationship between brain changes and genetic risk factors in laryngeal dystonia (or spasmodic dysphonia). The researchers use a novel approach of combined imaging genetics, next-generation DNA sequencing, and clinical-behavioral testing. The use of a cross-disciplinary approach as a tool for the discovery of the mediating neural mechanisms that bridge the gap from DNA sequence to the pathophysiology of dystonia holds a promise for the understanding of the mechanistic aspects of brain function affected by risk gene variants, which can be used reliably for the discovery of associated genes and neural integrity markers for this disorder. The expected outcome of this study may lead to better clinical management of this disorder, including its improved detection, accurate diagnosis, and assessment of the risk of developing dystonia in family members.