Search clinical trials by condition, location and status
The purpose of this study is to evaluate the efficacy, safety, and tolerability of BMS-986368 in participants with Multiple Sclerosis Spasticity
Physical therapists use dry static cupping for the treatment of many conditions, including spasticity for patients post-stroke. While research better describes the effects of dry static cupping for patients with orthopedic conditions, information is lacking on central conditions, such as stroke and resulting spasticity.
Spasticity is characterized by increased muscle tension and is a classic consequence of upper motor neuron (UMN) damage in the central nervous system, such as from stroke or trauma. Clinically, it presents as muscle resistance to passive stretching, along with clasp-knife rigidity, clonus, increased tendon reflexes, and muscle spasms. An imbalance of the descending inhibitory and muscle stretch reflexes is thought to be the cause of spasticity. Post-stroke spasticity is a common condition that occurs in 37.5-45% of cases in the acute stage and 19-57.4% in the subacute stage after a stroke. At 6 months post-stroke, spasticity develops in 42.6-49.5% of cases, and at one year, it affects 35-57.4% of individuals. In patients with cerebral palsy (CP), incidence is almost 80% while in those living with spinal cord injury the number approaches up to 93%. Traumatic brain injury (TBI) patients have a higher prevalence on initial admission to neurorehabilitation but one in three patients will have chronic spasticity. However, the Defense and Veterans Brain Injury Center report a rate of TBIs amongst deployed veterans to be around 11-23% mostly from blast and explosive trauma. There have been studies as early as the 1980s exploring the efficacy of SCS for spasticity control, however, the credibility of many of these studies is constrained due to an incomplete comprehension of spasticity's underlying mechanisms, outdated research methods, and early limitations in implantable device technology. Intrathecal pumps for baclofen have remained as the mainstay for refractory spasticity, however, it comes with associated risks such as chemical dependence leading to acute baclofen withdrawal and requiring frequent refill requirement. Most importantly, it does not yield functional improvement of muscle activity, just suppression of spasticity. Botox is also routinely used but due to heterogeneity in muscle involvement as well as variability in provider skill, results may be inconsistent and short-lasting, requiring frequent clinic visits for repeat injections to the affected muscle groups. SCS may be able to address that gap in spasticity management.
This multicenter, randomized, double-blind, sham-controlled study is designed to evaluate the efficacy and safety of the iovera° system in subjects with upper extremity spasticity. A total of approximately 132 subjects will be enrolled; 88 subjects will receive treatment with the iovera° system and 44 subjects will receive sham treatment (sham iovera° system treatment).
Spasticity develops months after spinal cord injury (SCI) and persists over time. It presents as a mixture of tonic features, namely increased muscle tone (hypertonia) and phasic features, such as hyperactive reflexes (hyperreflexia), clonus, and involuntary muscle contractions (spasms). Spasticity is often disabling because it interferes with hygiene, transfers, and locomotion and can disturb sleep and cause pain. For these reasons, most individuals seek treatments for spasticity after SCI. New developments in electrical neuromodulation with transcutaneous spinal stimulation (TSS) show promising results in managing spasticity non-pharmacologically. The underlying principle of TSS interventions is that the afferent input generated by posterior root stimulation modifies the excitability of the lumbosacral network to suppress pathophysiologic spinal motor output contributing to distinctive features of spasticity. However, the previous TSS studies used almost identical protocols in terms of stimulation frequency and intensity despite the great flexibility offered by this treatment strategy and the favorable results with the epidural stimulation at higher frequencies. Therefore, the proposed study takes a new direction to systematically investigate the standalone and comparative efficacy of four TSS interventions, including those used in previous studies. Our central hypothesis is that electrical neuromodulation with the selected TSS protocols (frequency: 50/100 Hz; intensity: 0.45 or 0.9 times the sub-motor threshold) can reduce and distinctly modify tonic and phasic components of spasticity on short- and long-term basis. We will test our hypothesis using a prospective, experimental, cross-over, assessor-masked study design in 12 individuals with chronic SCI (more than 1-year post-injury). Aim 1. Determine the time course of changes and immediate after-effects of each TSS protocol on tonic and phasic spasticity. The results will reveal the evolution of changes in spasticity during 30-min of TSS and the most effective protocol for producing immediate aftereffects. Aim 2. Determine the effect of TSS on spasticity after a trial of home-based therapy with each protocol. The participants will administer 30 min of TSS daily for six days with each of the four TSS protocols selected randomly. This aim will reveal the long-term carry-over effects of TSS intervention on various components of spasticity after SCI. Aim 3. Determine the participants' experience with TSS as a home-based therapy through focus group meetings. We will conduct focus group meetings after participants finish the home-based therapy trial. Accomplishing this specific aim will provide a valuable perspective on the value, challenges, and acceptability of TSS as a home-based intervention. The study addresses important questions for advancing scientific knowledge and clinical management of spasticity after SCI. Specifically, it will examine the efficacy of TSS frequencies and intensities on tonic and phasic spasticity. The study results will be relevant for a high proportion of individuals living with SCI that could benefit from this novel and low-cost non-pharmacological approach to managing spasticity after SCI.
People with spinal cord injury (SCI) experience a host of secondary complications that can impact their quality of life and functional independence. One of the more prevalent complications is spasticity, which occurs in response to spinal cord damage and the resulting disruption of motor pathways. Common symptoms include spasms and stiffness, and can occur more than once per hour in many people with SCI. Spasticity can have a negative impact over many quality of life domains, including loss of functional independence, activity limitations, and even employment. Its impact on health domains is also pronounced, with many people who have spasticity reporting mood disorders, depression, pain, sleep disturbances, and contractures. Spasticity can interfere with post-injury rehabilitation and lead to hospitalization. There are many treatments for spasticity in this population. However, many do not have long-term efficacy, and, if they do, they are often pharmacological in nature and carry side effects that could limit function or affect health. The goal of this pilot, randomized-controlled study is to investigate the potential efficacy and safety of a non-invasive treatment with a low side effect profile, extracorporeal shockwave therapy (ESWT). ESWT has shown some benefits in people with post-stroke spasticity with no long term side effects. Thirty individuals with chronic, traumatic SCI will be recruited. Fifteen will be provided with ESWT while the other fifteen will be given a sham treatment. Clinical and self-report measures of spasticity and its impact on quality of life will be collected, as well as quantitative ultrasound measures of muscle architecture and stiffness. The ultimate goal of this pilot project is to collect the data necessary to apply for a larger randomized-controlled trial. Conducting a larger trial will allow for a more powerful estimation of safety and efficacy of ESWT as a treatment for spasticity in people with SCI.
The purpose of the HSP Sequencing Initiative is to better understand the role of genetics in hereditary spastic paraplegia (HSP) and related disorders. The HSPs are a group of more than 80 inherited neurological diseases that share the common feature of progressive spasticity. Collectively, the HSPs present the most common cause of inherited spasticity and associated disability, with a combined prevalence of 2-5 cases per 100,000 individuals worldwide. In childhood-onset forms, initial symptoms are often non-specific and many children may not receive a diagnosis until progressive features are recognized, often leading to a significant diagnostic delay. Genetic testing in children with spastic paraplegia is not yet standard practice. In this study, the investigators hope to identify genetic factors related to HSP. By identifying different genetic factors, the investigators hope that over time we can develop better treatments for sub-categories of HSP based on cause.
The purpose of the study is to assess the safety and efficacy of increasing doses of IPN10200 with the aim to evaluate the Pharmacodynamics (PD) profile of IPN10200 and to establish the total IPN10200 doses(s) that offer the best efficacy/safety profile when used for the treatment of Adult upper limb (AUL) spasticity.
The purpose of this study is to to explore the safety and efficacy of the EXOPULSE Mollii suit, a full-body electrostimulation suit, for individuals with neurological or neuromuscular conditions that cause spasticity, hyperreflexia, and/or pain.
The Spastic Paraplegia - Centers of Excellence Research Network (SP-CERN) is a collaborative research consortium dedicated to advancing the understanding, diagnosis, and treatment of hereditary spastic paraplegia (HSP) and primary lateral sclerosis (PLS). Aims of the consortium are to a) perform natural history studies of HSP subtypes, b) discover and validate biomarkers and clinician- and patient-reported outcome measures, c) uncover HSP's molecular pathophysiology and develop rational therapeutic targets, and d) perform sufficiently powered clinical trials. The current pilot study is aimed at enrolling 100 individuals with hereditary spastic paraplegia type 4 (SPG4) or hereditary spastic paraplegia type 5A (SPG5A).