Treatment Trials

Search clinical trials by condition, location and status

Free to JoinExpert SupportLatest Treatments

Filter & Search

Clinical Trial Results

Showing 1-8 of 8 trials for Spasticity-muscle
Recruiting

Melpida: Recombinant Adeno-associated Virus (serotype 9) Encoding a Codon Optimized Human AP4M1 Transgene (hAP4M1opt)

Texas · Dallas, TX

MELPIDA is proposed for the treatment of subjects with SPG50 and targets neuronal cells to deliver a fully functional human AP4M1 cDNA copy via intrathecal injection to counter the associated neuronal loss. Outcomes will evaluate the safety and tolerability of a single dose of MELPIDA, which will be measured by the treatment-associated adverse events (AEs) and serious adverse events (SAEs). Secondarily, the trial will explore efficacy in terms of disease burden assessments.

Recruiting

Radiosurgery Treatment for Spasticity Associated With Stroke, SCI & Cerebral Palsy

Ohio · Columbus, OH

A scientific study is being done to test a special treatment for people who have spasticity or tight muscles. This treatment is called "stereotactic radiosurgery dorsal rhizotomy." It uses very accurate beams of radiation to target certain nerves in the back to help loosen up the muscles. In this study, people are put into two groups by chance: one group gets the real treatment, and the other group gets a "fake" treatment that doesn't do anything. This fake treatment is called a "sham." Doing this helps make sure the study is fair and the results are true. After the people in the study get their treatment, the researchers will watch and see how they do. They will check if their muscles are less stiff and if they have any side effects. By looking at the results from both groups, the researchers can find out if the special treatment really helps people with spasticity. Patients who got the "fake" treatment will be eligible to receive the "real" treatment after 6 months.

Recruiting

Transcutaneous Spinal Stimulation for Lower Limb Spasticity in Spinal Cord Injury

Mississippi · Jackson, MS

Spasticity develops months after spinal cord injury (SCI) and persists over time. It presents as a mixture of tonic features, namely increased muscle tone (hypertonia) and phasic features, such as hyperactive reflexes (hyperreflexia), clonus, and involuntary muscle contractions (spasms). Spasticity is often disabling because it interferes with hygiene, transfers, and locomotion and can disturb sleep and cause pain. For these reasons, most individuals seek treatments for spasticity after SCI. New developments in electrical neuromodulation with transcutaneous spinal stimulation (TSS) show promising results in managing spasticity non-pharmacologically. The underlying principle of TSS interventions is that the afferent input generated by posterior root stimulation modifies the excitability of the lumbosacral network to suppress pathophysiologic spinal motor output contributing to distinctive features of spasticity. However, the previous TSS studies used almost identical protocols in terms of stimulation frequency and intensity despite the great flexibility offered by this treatment strategy and the favorable results with the epidural stimulation at higher frequencies. Therefore, the proposed study takes a new direction to systematically investigate the standalone and comparative efficacy of four TSS interventions, including those used in previous studies. Our central hypothesis is that electrical neuromodulation with the selected TSS protocols (frequency: 50/100 Hz; intensity: 0.45 or 0.9 times the sub-motor threshold) can reduce and distinctly modify tonic and phasic components of spasticity on short- and long-term basis. We will test our hypothesis using a prospective, experimental, cross-over, assessor-masked study design in 12 individuals with chronic SCI (more than 1-year post-injury). Aim 1. Determine the time course of changes and immediate after-effects of each TSS protocol on tonic and phasic spasticity. The results will reveal the evolution of changes in spasticity during 30-min of TSS and the most effective protocol for producing immediate aftereffects. Aim 2. Determine the effect of TSS on spasticity after a trial of home-based therapy with each protocol. The participants will administer 30 min of TSS daily for six days with each of the four TSS protocols selected randomly. This aim will reveal the long-term carry-over effects of TSS intervention on various components of spasticity after SCI. Aim 3. Determine the participants' experience with TSS as a home-based therapy through focus group meetings. We will conduct focus group meetings after participants finish the home-based therapy trial. Accomplishing this specific aim will provide a valuable perspective on the value, challenges, and acceptability of TSS as a home-based intervention. The study addresses important questions for advancing scientific knowledge and clinical management of spasticity after SCI. Specifically, it will examine the efficacy of TSS frequencies and intensities on tonic and phasic spasticity. The study results will be relevant for a high proportion of individuals living with SCI that could benefit from this novel and low-cost non-pharmacological approach to managing spasticity after SCI.

Recruiting

Extracorporeal Shockwave Therapy for Spasticity in People With Spinal Cord Injury

New Jersey · West Orange, NJ

People with spinal cord injury (SCI) experience a host of secondary complications that can impact their quality of life and functional independence. One of the more prevalent complications is spasticity, which occurs in response to spinal cord damage and the resulting disruption of motor pathways. Common symptoms include spasms and stiffness, and can occur more than once per hour in many people with SCI. Spasticity can have a negative impact over many quality of life domains, including loss of functional independence, activity limitations, and even employment. Its impact on health domains is also pronounced, with many people who have spasticity reporting mood disorders, depression, pain, sleep disturbances, and contractures. Spasticity can interfere with post-injury rehabilitation and lead to hospitalization. There are many treatments for spasticity in this population. However, many do not have long-term efficacy, and, if they do, they are often pharmacological in nature and carry side effects that could limit function or affect health. The goal of this pilot, randomized-controlled study is to investigate the potential efficacy and safety of a non-invasive treatment with a low side effect profile, extracorporeal shockwave therapy (ESWT). ESWT has shown some benefits in people with post-stroke spasticity with no long term side effects. Thirty individuals with chronic, traumatic SCI will be recruited. Fifteen will be provided with ESWT while the other fifteen will be given a sham treatment. Clinical and self-report measures of spasticity and its impact on quality of life will be collected, as well as quantitative ultrasound measures of muscle architecture and stiffness. The ultimate goal of this pilot project is to collect the data necessary to apply for a larger randomized-controlled trial. Conducting a larger trial will allow for a more powerful estimation of safety and efficacy of ESWT as a treatment for spasticity in people with SCI.

Recruiting

Activating Spinal Circuits to Improve Walking, Balance, Strength, and Reduce Spasticity

Atlanta, Georgia

For many people with spinal cord injury (SCI), the goal of walking is a high priority. There are many approaches available to restore walking function after SCI; however, these approaches often involve extensive rehabilitation training and access to facilities, qualified staff, and advanced technology that make practicing walking at home difficult. For this reason, developing training approaches that could be easily performed in the home would be of great value. In addition, non-invasive spinal stimulation has the potential to increase the effectiveness of communication between the brain and spinal cord. Combining motor skill training (MST) with transcutaneous spinal stimulation (TSS) may further enhance the restoration of function in persons with SCI. Therefore, the purpose of this study is to determine if moderate-intensity, MST can improve walking-related outcomes among persons with SCI and to determine if the addition of non-invasive TSS will result in greater improvements in function compared to training alone.

Recruiting

Hereditary Spastic Paraplegia Genomic Sequencing Initiative (HSPseq)

Massachusetts · Boston, MA

The purpose of the HSP Sequencing Initiative is to better understand the role of genetics in hereditary spastic paraplegia (HSP) and related disorders. The HSPs are a group of more than 80 inherited neurological diseases that share the common feature of progressive spasticity. Collectively, the HSPs present the most common cause of inherited spasticity and associated disability, with a combined prevalence of 2-5 cases per 100,000 individuals worldwide. In childhood-onset forms, initial symptoms are often non-specific and many children may not receive a diagnosis until progressive features are recognized, often leading to a significant diagnostic delay. Genetic testing in children with spastic paraplegia is not yet standard practice. In this study, the investigators hope to identify genetic factors related to HSP. By identifying different genetic factors, the investigators hope that over time we can develop better treatments for sub-categories of HSP based on cause.

Recruiting

Operant Conditioning of Spinal Reflexes Training System--Reflex Operant Down Conditioning

Charleston, South Carolina

The purpose of this study is to validate the capacity of a reflex training system to change the size of the targeted reflex. For this, the researchers are recruiting 25 individuals with chronic incomplete SCI who have spasticity in the leg to participate in the reflex training procedure. The study involves approximately 45 visits with a total study duration of about 6 months.

Recruiting

Physiological Changes Induced Through MEP Conditioning in People With SCI

South Carolina · Charleston, SC

The study team is currently recruiting volunteers who are interested in participating in a brain-spinal cord-muscle response training study that aims to better understand the changes that take place in the nervous system as a result of this type of training. After spinal cord injury, brain-to-muscle connections are often interrupted. Because these connections are important in movement control, when they are not working well, movements may be disturbed. Researchers have found that people can learn to strengthen these connections through training. Strengthening these connections may be able to improve movement control and recovery after injuries. Research participants will be asked to stand, sit, and walk during the study sessions. Electrodes are placed on the skin over leg muscles for monitoring muscle activity. For examining brain-to-muscle connections, the study team will use transcranial magnetic stimulation. The stimulation is applied over the head and will indirectly stimulate brain cells with little or no discomfort. Participation in this study requires approximately three sessions per week for four months, followed by two to three sessions over another three months. Each session lasts approximately 1 hour.