Search clinical trials by condition, location and status
AliveCor (www.alivecor.com) has developed several electrocardiogram (ECG) devices that interface with iOS and Android smartphones and tablets via various Kardia apps. The current Kardia family of devices can measure single lead and six limb-lead ECGs, depending on the device. KardiaMobile, KardiaMobile 6L, and KardiaMobile Card have FDA clearance for ECG rhythm recording. A modified single-lead Kardia smartphone 12-lead ECG was previously validated in the multicenter ST LEUIS study for the diagnosis of ST-Segment Elevation Myocardial Infarction (STEMI) and Non-ST-Elevation Myocardial Infarction (NSTEMI). Recently, AliveCor developed a new device: AliveCor (AC) 12-lead (12L) ECG System to record simultaneously 4 leads of ECG and then generate complete 12-lead ECGs. A previous protocol at the University of Oklahoma involved 200 subjects with early prototypes of the AC 12L device with the specific aim to validate that it accurately generated 12-lead ECGs as compared to simultaneously acquired FDA-cleared 12-lead ECGs. The prototype version of the AliveCor 12L ECG System simultaneously measured four channels of ECG (leads I, II, V2, V4), calculated the remaining limb leads as is standard for 12-lead ECGs (Leads III, aVR, aVL, aVF) and synthesized the remaining 4 precordial ECG leads (V1, V3, V5, V6). This protocol will serve to validate the production version of the system against standard 12-Lead ECGs for the diagnosis of STEMI and NSTEMI in patients admitted to the Emergency Department or directly to the Cardiac Cath Lab for the evaluation of chest pain. It is anticipated that the waveforms for each of the 12 leads from the AC 12L ECG System will be highly correlated with the corresponding leads from the comparator commercially available 12-lead ECG devices used at participating sites. The purpose of this study is to clinically validate that the four-channel AC 12L ECG device can enable the diagnosis of STEMI and NSTEMI in a non-inferior manner to existing 12-lead ECG devices.
The aim of this study is to evaluate the impact of a Telehealth program on the time from First Medical Contact (FMC) to Reperfusion in STEMI (ST-elevation myocardial infarction) patients, by supporting local paramedics in their care delivery.
The goal of this observational study to measure the heart's microvascular function in the setting of a myocardial infarction (MI), or heart attack, using a method called continuous saline thermodilution (CST). The participants will include people who are experiencing MI from sudden and complete blockage of a coronary artery requiring immediate balloon and/or stent therapy. After getting the balloon and/or stent therapy, participants will have their heart's microvascular system tested using CST. The main questions it aims to answer are: * What measurements using CST can we expect from the heart's microvascular system during a treated MI? * Can CST measurements during a treated MI predict the amount of heart muscle that is injured and that recovers? For this study, participants will undergo measurement of their heart's microvascular function after balloon and/or stent therapy for the MI. They will then receive an MRI scan of the heart several days after the MI.
The SuperSaturated Oxygen Comprehensive Observational Registry (SSCORE) registry, a prospectively designed observational study, aims to evaluate the clinical utility and effectiveness of SuperSaturated Oxygen (SSO2) Therapy versus percutaneous coronary intervention (PCI) alone among patients with anterior acute myocardial infarction (AMI) in routine clinical practice. The goal is to collect real-world data from patients treated with SSO2 Therapy to determine its impact on the overall heart failure (HF) burden on patients and healthcare systems compared with usual care for treatment of patients with AMI. The SSCORE Registry will generate effectiveness and healthcare resource utilization data that will be used in cost-effectiveness analysis modeling.
Adults who have had an ST-elevation myocardial infarction and were treated with stent placement will receive an intravenous infusion of a monoclonal antibody in order to prevent further heart muscle damage. The goal is to learn if this treatment improves some measures of heart function and inflammation. The study treatment patients will be compared to patients who receive placebo (inactive treatment).
Sarcoidosis is a multisystem granulomatous disease of unknown cause that can affect any organ in the body, including the heart. Granulomatous myocarditis can lead to ventricular dysfunction and ventricular arrhythmias causing significant morbidity and mortality. Immunosuppressive therapy (IST) has been shown to reverse active myocarditis and preserve left ventricular (LV) function and in some cases improve LV function. In addition, IST can suppress arrhythmias that develop due to active myocarditis and prevent the formation of scar. The potential role of cardiac biomarkers, including brain natriuretic peptide (BNP), atrial natriuretic peptide (ANP), and cardiac troponins, in detecting active myocarditis is limited and studies have been disappointing. At present, there are no biomarkers to detect active myocarditis and the use of advanced imaging modalities (FDG-PET) for assessing and monitoring active myocarditis is not feasible or practical and is associate with high radiation exposure. As such, a biomarker that is reflective of active myocarditis and that is cardiac specific will assist physicians in assessing the presence of active myocarditis to guide therapeutic decisions and to assess response to therapy which can limit further cardiac damage. Cell free DNA (cfDNA) are fragments of genomic DNA that are released into the circulation from dying or damaged cells. It is a powerful diagnostic tool in cancer, transplant rejection and fetal medicine especially when the genomic source differs from the host. A novel technique that relies on tissue unique CpG methylation patterns can identify the tissue source of cell free DNA in an individual reflecting potential tissue injury. We will be conducting a pilot study to explore the utility of this diagnostic tool to identify granulomatous myocarditis in patients with sarcoidosis.