Search clinical trials by condition, location and status
This clinical trial compares the effect of an automated personalized physical activity intervention supported by wearable technology to standard of care on physical activity levels and quality of life in patients with stage II- IV ovarian, primary peritoneal, fallopian tube cancer or endometrial cancer that is newly diagnosed. Physical activity is a modifiable risk factor for the prevention and treatment of many diseases. In fact, increased levels of physical activity have been shown to decrease the risk of some cancers as well as increase overall survival in some cancers. Currently, standard of care guidelines include participation in at least 150 minutes of moderate exercise weekly. An automated personalized physical activity intervention may increase physical activity, enhance quality of life, and improve physical function and daily living activities compared to standard recommendations in patients with stage II-IV ovarian, primary peritoneal, fallopian tube or newly diagnosed endometrial cancer. This trial also evaluates the impact of physical activity on the gut microbiome and immune function. The microbiome is the collection of tiny organisms, like bacteria, that live in and on the body, especially places like the gut. These microorganisms play an important role in health. Information gathered from this study may help understand how the gut microbiome and physical activity influences the immune system in patients with stage II-IV ovarian, primary peritoneal, fallopian tube or newly diagnosed endometrial cancer.
The purpose of this study is to see if propranolol and etodolac along with mind-body resilience training/MBRT and music therapy help participants who are experiencing physiological stress before, during, and after primary debulking surgery/PDS or IDS and also if it's better than the standard-of-care approach (no intervention for reducing stress).
The study aims to develop a test for early detection of ovarian cancer using DNA from a growth involving the ovary found in a washing of the uterus (womb), and proteins found in the blood. The samples of the wash and the blood will be taken before surgery. After surgery, doctors will determine whether the participant had ovarian cancer or a benign disease of the ovaries. The tests of the washings and the blood will be examined to see how much the participants with ovarian cancer can be separated from the participants with a benign ovarian disease by the tests. Small amounts from the washing and the blood samples will be sent to four sites for analysis. Statistical analyses of these data will compare tumor DNA found in the washing of the uterus with proteins in the blood to detect cases of ovarian cancer. The primary goal is to find tests that are mostly positive for cases of ovarian cancer and mostly negative for patients with benign disease. It is hoped that if the tests work for participants with symptoms of the disease that these tests will also work when testing women who have no symptoms. A new study would be needed to see if the tests worked in this situation. If the tests work, this could lead to increasing the number of cases detected in early stage disease and decreasing the number of cases detected in late stage disease. If this change in late stage is large, it will likely reduce deaths due to ovarian cancer.