Search clinical trials by condition, location and status
This phase II trial tests how well tamoxifen and pegylated liposomal doxorubicin works in treating patients with triple negative breast cancer that has spread from where it first started (primary site) to other places in the body (metastatic) or that has spread to nearby tissue or lymph nodes (locally advanced) and is unable to be operated on (inoperable). Tamoxifen works by blocking the effects of estrogen in the breast. This may help stop the growth of tumor cells that need estrogen to grow. Doxorubicin is in a class of medications called anthracyclines. Doxorubicin damages the cell's DNA and may kill cancer cells. It also blocks a certain enzyme needed for cell division and DNA repair. Liposomal doxorubicin is a form of the anticancer drug doxorubicin that is contained inside very tiny, fat-like particles. Liposomal doxorubicin may have fewer side effects and work better than other forms of the drug. Giving tamoxifen and pegylated liposomal doxorubicin together may work better in treating patients with metastatic or inoperable, locally advanced triple negative breast cancer than giving either of these drugs alone.
This phase II trial tests the accuracy of functional imaging (FFNP)-positron emission tomography (PET)/computed tomography (CT) to predict response to abemaciclib plus endocrine therapy. Abemaciclib is a drug used to treat certain types of hormone receptor positive (HR+), HER2 negative breast cancer. Abemaciclib blocks certain proteins, which may help keep tumor cells from growing. Endocrine therapy adds, blocks, or removes hormones that can cause cancer to grow. FFNP PET imaging is a form of x-ray that uses FFNP as an imaging agent that may provide more precise information about the location of tumors that "light up" with FFNP than a PET scan alone can provide.
This phase II trial tests how well propranolol and pembrolizumab work to cause tumor re-sensitization and therefore treatment in patients with triple negative breast cancer that has not responded to previous checkpoint inhibitor therapy (refractory), cannot be removed by surgery (unresectable) or has spread from where it first started (primary site) to other places in the body (metastatic). Propranolol is a drug that is classified as a beta-blocker. Beta-blockers affect the heart and circulation. Beta-blockers, like propranolol, may help to counteract effects of certain stress hormones produced by the body during cancer treatment and may increase the effectiveness of the pembrolizumab. Pembrolizumab is a drug that is classified as an immune checkpoint inhibitor. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Propranolol may be able to re-sensitize the cells of the immune system to respond to the checkpoint inhibitor pembrolizumab in patients with checkpoint inhibitor refractory metastatic or unresectable triple negative breast cancer.
This phase I trial tests the safety, side effects, and best dose of ASTX727 when given in combination with a usual approach of treatment with paclitaxel and pembrolizumab in patients with triple-negative breast cancer that has spread from where it first started (primary site) to other places in the body (metastatic). The usual approach is defined as care most people get for this type of cancer. The usual approach for patients with metastatic triple negative breast cancer who are not in a study is chemotherapy with drugs like paclitaxel, carboplatin, cisplatin, eribulin, vinorelbine, capecitabine, gemcitabine, doxorubicin or cyclophosphamide. There is a protein called PD-L1 that helps regulate the body's immune system. For patients who have PD-L1+ tumors, immunotherapy (pembrolizumab) is usually added to paclitaxel or carboplatin/gemcitabine as initial treatment. For patients who have PD-L1-negative tumors, chemotherapy alone is used, without immunotherapy. ASTX727 is a combination of two drugs, decitabine and cedazuridine. Cedazuridine is in a class of medications called cytidine deaminase inhibitors. It prevents the breakdown of decitabine, making it more available in the body so that decitabine will have a greater effect. Decitabine is in a class of medications called hypomethylation agents. It works by helping the bone marrow produce normal blood cells and by killing abnormal cells in the bone marrow. Paclitaxel is in a class of medications called antimicrotubule agents. It stops tumor cells from growing and dividing and may kill them. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving ASTX727 with usual treatment approach with paclitaxel and pembrolizumab may be able to shrink or stabilize the tumor for longer than the usual approach alone in patients with metastatic triple negative breast cancer.
This phase Ib trial tests the safety and tolerability of ZEN003694 in combination with an immunotherapy drug called pembrolizumab and the usual chemotherapy approach with nab-paclitaxel for the treatment of patients with triple negative-negative breast cancer that has spread to other parts of the body (advanced). Paclitaxel is in a class of medications called antimicrotubule agents. It stops cancer cells from growing and dividing and may kill them. Nab-paclitaxel is an albumin-stabilized nanoparticle formulation of paclitaxel which may have fewer side effects and work better than other forms of paclitaxel. Immunotherapy with monoclonal antibodies, such as pembrolizumab may help the body's immune system attach the cancer and may interfere with the ability of tumor cells to grow and spread. ZEN003694 is an inhibitor of a family of proteins called the bromodomain and extra-terminal (BET). It may prevent the growth of tumor cells that over produce BET protein. Combination therapy with ZEN003694 pembrolizumab immunotherapy and nab-paclitaxel chemotherapy may help shrink or stabilize cancer for longer than chemotherapy alone.
This phase I trial tests the safety and tolerability of an experimental personalized vaccine when given by itself and with pembrolizumab in treating patients with solid tumor cancers that have spread to other places in the body (advanced). The experimental vaccine is designed target certain proteins (neoantigens) on individuals' tumor cells. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving the personalized neoantigen peptide-based vaccine with pembrolizumab may be safe and effective in treating patients with advanced solid tumors.
This phase II/III trial studies if contrast-enhanced ultrasounds using a contrast dye, perflutren lipid microspheres (Definity), can predict the response to chemotherapy by estimating the pressure in the cancer in patients with breast cancer that has spread to nearby tissues and lymph nodes (locally advanced). The efficacy of cancer therapy is affected by the pressure in the cancer. Definity is a contrast dye used to create better images during ultrasounds. The purpose of this trial is to determine if a special kind of ultrasound, called contrast-enhanced ultrasound, an experimental imaging test, can detect pressures in cancer to determine the response to neoadjuvant chemotherapy in patients with breast cancer.
This phase II trial studies if talazoparib works in patients with cancer that may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced) and has mutation(s) in deoxyribonucleic acid (DNA) damage response genes who have or have not already been treated with another PARP inhibitor. Talazoparib is an inhibitor of PARP, a protein that helps repair damaged DNA. Blocking PARP may help keep cancer cells from repairing their damaged DNA, causing them to die. PARP inhibitors are a type of targeted therapy. All patients who take part on this study must have a gene aberration that changes how their tumors are able to repair DNA. This trial may help scientists learn whether some patients might benefit from taking different PARP inhibitors "one after the other" and learn how talazoparib works in treating patients with advanced cancer who have aberration in DNA repair genes.
This phase II trial studies how well the combination of avelumab with liposomal doxorubicin with or without binimetinib, or the combination of avelumab with sacituzumab govitecan works in treating patients with triple negative breast cancer that is stage IV or is not able to be removed by surgery (unresectable) and has come back (recurrent). Immunotherapy with checkpoint inhibitors like avelumab require activation of the patient's immune system. This trial includes a two week induction or lead-in of medications that can stimulate the immune system. It is our hope that this induction will improve the response to immunotherapy with avelumab. One treatment, sacituzumab Govitecan, is a monoclonal antibody called sacituzumab linked to a chemotherapy drug called SN-38. Sacituzumab govitecan is a form of targeted therapy because it attaches to specific molecules (receptors) on the surface of tumor cells, known as Tumor-associated calcium signal transducer 2 (TROP2) receptors, and delivers SN-38 to kill them. Another treatment, liposomal doxorubicin, is a form of the anticancer drug doxorubicin that is contained in very tiny, fat-like particles. It may have fewer side effects and work better than doxorubicin, and may enhance factors associated with immune response. The third medication is called binimetinib, which may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth, and may help activate the immune system. It is not yet known whether giving avelumab in combination with liposomal doxorubicin with or without binimetinib, or the combination of avelumab with sacituzumab govitecan will work better in treating patients with triple negative breast cancer.
This pilot trial studies whether a procedure called lymphovenous bypass would prevent lymphedema (arm swelling) in patients with inflammatory breast cancer or non-inflammatory breast cancer that has spread to nearby tissues or lymph nodes or melanoma. The lymphovenous bypass procedure creates a path for lymphatic fluid to flow away from the arms. It is usually done after a diagnosis of lymphedema. In this study, giving lymphovenous bypass before underarm lymph node surgery may help prevent lymphedema from forming.