Search clinical trials by condition, location and status
People with brainstem stroke, advanced amyotrophic lateral sclerosis (ALS, also known as Lou Gehrig's disease), or other disorders can become unable to move or speak despite being awake and alert. In this project, the investigators seek to further translate knowledge about interpreting brain signals related to movement, and to further develop an intracortical brain-computer interface (iBCI) that could restore rapid and intuitive use of communication apps on tablet computers by people with paralysis.
The goal of this observational study is to determine if nerve transfer surgeries improve upper extremity function and quality of life in patients with a high level cervical spinal cord injury. Participants will: * undergo standard of care pre- and post-op testing and study exams * complete pre- and post-questionnaires * undergo standard of care nerve transfer surgeries * follow-up with surgeon at 6/12/18/24/36 and potentially at 48 months * attend therapy at local therapist for up to 2 years postop.
The goal of this study is to improve our understanding of speech production, and to translate this into medical devices called intracortical brain-computer interfaces (iBCIs) that will enable people who have lost the ability to speak fluently to communicate via a computer just by trying to speak.
The purpose of this study is to obtain preliminary device safety information and demonstrate proof of principle (feasibility) of the ability of people with tetraplegia to control a computer cursor and other assistive devices with their thoughts.
This is a single-cohort early feasibility trial to determine whether an investigational device called the Bidirectional Neural Bypass System can lead to the restoration of movement and sensation in the hand and wrist of up to three individuals with tetraplegia.
The purpose of this study is to obtain preliminary device safety information and demonstrate proof of principle (feasibility) of the ability of people with tetraplegia to control a computer cursor and other assistive devices with their thoughts.
The goal of this pilot clinical study is to investigate the NeuroLife EMG-FES Sleeve System, a closed-loop approach to functional electrical stimulation, in adults (n=12) with chronic (\>12 months) tetraplegia due to spinal cord injury. Briefly, the NeuroLife EMG-FES System is a completely non-invasive system (surface electrodes only, no implantable components) worn on the forearm which has up to 160 electrodes that can record electromyography (EMG), or muscle activity, and also electrically stimulate (FES) muscles. The main questions this study aims to answer are: 1) What is the safety, feasibility, and early efficacy of the NeuroLife EMG-FES system on upper extremity outcomes in chronic SCI survivors with tetraplegia, and 2) Can EMG be used as a biomarker of recovery over time in chronic SCI participants undergoing rehabilitation? Participants will complete an intensive, task-oriented rehabilitation protocol using the NeuroLife EMG-FES System (3x/week x 12 weeks) in an outpatient setting. We will assess functional outcomes using standardized clinical measures of hand and arm function at six timepoints.
The purpose of the current study is to evaluate whether a home-based, telehealth-supported intervention combining Blood Flow Restricted Exercise (BES) and Transspinal Stimulation (TS) will improve motor and functional abilities greater than BES+sham TS in persons with chronic, incomplete tetraplegia.
In support of the long-term goal of developing new strategies to increase limb function after SCI, the objectives of this proposal are to: 1) Examine the behavioral and physiological effects of TESS on upper-limb muscles after cervical SCI; and 2) Maximize the recovery of reaching and grasping potential by using tailored TESS in a task-specific manner with motor training. Veterans with cervical spinal injuries and healthy volunteers will be recruited for this study.
The purpose of this research study is to examine the feasibility of a system that involves implanting small electrodes in the parts of the brain that control movement and sensation, and combining that with electrodes in the upper arm and shoulder to activate paralyzed muscles of the arm and hand. This system is intended for people with extensive paralysis in their arms. The small electrodes in the brain will be used to attempt to measure intended movements, and the muscles in the arm and hand will be stimulated to attempt to follow those intentions. The study is a prospective, non-randomized, open-label, exploratory safety/feasibility trial of up to 12 subjects. The Primary Endpoint will be evaluation over the first 13 months after implantation, after which the subjects will have the option of removal of the device or continued participation in a long-term study.