Search clinical trials by condition, location and status
This phase II trial tests how well vemurafenib and cobimetinib work in treating patients with high risk differentiated thyroid carcinoma with BRAFV600E mutation, in preparation for radioactive iodine therapy. Vemurafenib and cobimetinib are used in patients whose cancer has a mutated (changed) form of a gene called BRAF. They are in a class of medications called kinase inhibitors. They work by blocking the action of an abnormal protein that signals cancer cells to multiply. This helps slow or stop the spread of cancer cells. Giving vemurafenib and cobimetinib may work better to treat patients with high risk differentiated thyroid carcinoma with BRAFV600E mutation, in preparation for radioactive iodine therapy.
The purpose of this study is to evaluate a new diagnostic imaging test, positron emission tomography (PET), with a different radioactive form of iodine called iodine-124. This form is able to accurately measure the amount of radioactive iodine uptake in the cancer. If the new test determines sufficient radioiodine uptake in the cancer, treatment will continue as usual. However, if the new test shows only low radioiodine uptake, a decision may be made that the benefit from radioiodine therapy is insufficient and that another form of therapy is preferred.
This research is being done to determine the efficacy of selpercatinib to restore radioactive iodine (I-131 NaI) uptake and allow for I-131 treatment in people with RET fusion-positive radioiodine-refractory thyroid cancer. This research study involves the study drug selpercatinib in combination with standard of care treatments, I-131 and thyrotropin alfa (rhTSH).
In this study, participants with multiple types of advanced (unresectable and/or metastatic) solid tumors who have progressed on standard of care therapy will be treated with pembrolizumab (MK-3475).
BDTX-4933-101 is a first-in-human, open-label, Phase 1 dose escalation and an expansion cohort study designed to evaluate the safety and tolerability, maximum tolerated dose (MTD) and the preliminary recommended Phase 2 dose (RP2D), and antitumor activity of BDTX-4933. The study population for the Dose Escalation part of the study comprises adults with recurrent advanced/metastatic non-small cell lung cancer (NSCLC) harboring KRAS non-G12C mutations, BRAF, or CRAF (RAF1) mutations, advanced/metastatic melanoma harboring BRAF or NRAS mutations, histiocytic neoplasms harboring BRAF, CRAF, or NRAS mutations, and other solid tumors harboring BRAF mutations. The study population for the Dose Expansion part of the study comprises adults with recurrent advanced/metastatic NSCLC harboring KRAS non-G12C mutations. All patients will self-administer BDTX-4933 orally in 28-day cycles until disease progression, toxicity, withdrawal of consent, or termination of the study.
Pleuropulmonary blastoma (PPB) is a rare malignant neoplasm of the lung presenting in early childhood. Type I PPB is a purely cystic lesion, Type II is a partially cystic, partially solid tumor, Type III is a completely solid tumor. Treatment of children with PPB is at the discretion of the treating institution. This study builds off of the 2009 study and will also seek to enroll individuals with DICER1-associated conditions, some of whom may present only with the DICER1 gene mutation, which will help the Registry understand how these tumors and conditions develop, their clinical course and the most effective treatments.