Search clinical trials by condition, location and status
The purpose of this research is to understand and treat Traumatic Brain Injury (TBI) associated photophobia (light sensitivity) and its impact on visual function.
This study is a prospective two-arm, single blind randomized controlled trial design to compare the clinical effectiveness of telemedicine-delivered, 6-session, standardized cognitive behavioral therapy for insomnia (CBT-I) and mindfulness-based treatment for insomnia (MBTI) in treating insomnia symptoms and ameliorating depressive symptoms in persons with mild to moderate TBI and comorbid Post-Traumatic Stress Symptoms (PTSS) and insomnia symptoms in a 360 patients. Participants will undergo assessment (psychosocial questionnaires, neurocognitive testing, sleep monitoring) at baseline, at the end of treatment, and at 2-, 6- and 12-weeks post-treatment. The primary outcome is sleep as measured by the Insomnia Severity Index (ISI).
The purpose of this study is to improve behavior control displayed by persons with traumatic brain injury by assessing effectiveness of treatments for post-TBI irritability and aggression.
The goal of this clinical trial is to determine which crystalloid (saline or balanced) should be used in the critical management of Traumatic Brain Injury (TBI) in moderate or severe TBI patients. This trial will determine whether the use of saline or balanced crystalloids is associated with improved outcomes in TBI patients. Participants will 1. be given fluids through the veins, either saline or balanced fluid will be given. 2. From the first day to the day 14 of the hospitalization (or discharge, whichever comes first), vital signs, laboratory values, treatments given, and other medical data will be collected from the medical record. 3. Six months later, your final disability, if any, will be assessed during your follow-up with a doctor. It involves answering a short survey that will take about 5 minutes or less.
The two goals of the proposed study are: (1) To determine how brain activity changes with cognitive recovery over time from acute to chronic phases of traumatic brain injury (TBI). (2) To determine how the time of anodal transcranial electrical stimulation (A-tES) administration affects cognitive performance and brain activity in TBI. To achieve these study goals, the investigators will conduct a pilot clinical trial over three years in which the investigators aim to recruit 60 patients with moderate to severe TBI at the University of Cincinnati Medical Center (UCMC). During the acute phase of TBI, all participants will complete clinical questionnaires and perform 2 cognitive computer tasks while their brain activity is recorded. Half of the participants will be randomly selected to receive A-tES for 15 minutes while performing cognitive tasks and the other half will receive sham stimulation. All participants will be followed for 6 months. During their 3-month follow-up, the investigators will perform another session where all participants complete the questionnaires and receive A-tES while performing cognitive tasks during brain recording. In their last visit at 6 months post-injury, all participants will complete the questionnaires and cognitive tasks with brain recording but no stimulation treatment. From the collected data, the investigators will determine if time from brain injury correlates with brain activity during performance of cognitive tasks. The investigators will also assess the efficacy of early A-tES treatment for improving cognitive task performance and clinical test ratings at 6 months post-injury in comparison to A-tES delivered during the 3-month follow-up visit.
The goal of this study is to learn if a enhanced environment (Metro Café) with multi model approach (an approach that combines several therapies) in chronic traumatic brain injury improves outcomes of recovery better than traditional therapy. The main questions it aims to answer are: * Determine the amount of therapy dosage (speech, cognition, arm and leg movements) obtained during the Metro Café therapy session. * Evaluate the connection between environmental enrichment dosage (the Metro Café) and clinical outcome scores. Researchers will compare Metro Café Treatment to those who do not receive this treatment to see if better improvements in function after a traumatic brain injury are seen in the Metro Café Treatment Participants will train in the Metro Cafe during the 2-month gap between assessments, for a total of 18 training sessions, each up to 2 hours, 3 times per week. Participants will greet and serve customers drinks and snacks, maintain food supplies at the counters and performs housekeeping tasks with advice and assistance from a supervising researcher as needed,
The goal of this observational study is to explore the relationship of heart function with the course and outcomes after traumatic brain injuries and nontraumatic intracerebral hemorrhage. The goal is to explore association between routinely collected hemodynamic and brain monitoring data. Participants already taking intervention A as part of their regular medical care and the investigators will follow up with participants 6 months after discharging the hospital.
This clinical trial aims to evaluate whether transcutaneous auricular vagus nerve stimulation (taVNS), a non-invasive brain stimulation method, can improve attention and memory in veterans with traumatic brain injury (TBI) and depression and/or posttraumatic stress disorder (PTSD). The study seeks to answer two main questions: 1. Can active taVNS improve attention and memory compared to sham (placebo) stimulation? 2. Does taVNS affect heart rate variability (HRV)? taVNS delivers a gentle electrical current to the vagus nerve through electrodes placed on the ear, targeting brain areas involved in attention and memory without requiring surgery. This study uses a crossover design, meaning all participants will experience two sessions: one with active taVNS and one with sham stimulation. The sham session feels similar but does not deliver actual stimulation, allowing researchers to compare the two and understand taVNS's effects on the brain. In a single visit, participants will: * Complete eligibility screening (questionnaires and vital signs). * Undergo two sessions (one active and one sham), randomly assigned. * Perform attention tasks before and after each session. * Have their heart rate monitored during the sessions. The findings will help determine whether taVNS could be an effective treatment for improving attention and memory in veterans with TBI.
Patients that undergo decompressive craniectomy are at risk of delayed changes in brain function known as "Sunken Flap Syndrome" or "Syndrome of the Trephined." The goal of this clinical trial is to see if placing a prosthetic over patients' skull defects can prevent "Sunken Flap Syndrome." The main questions are: 1. Can placing a prosthetic device over patients' skull defects prevent Sunken Flap Syndrome? 2. Can placing a prosthetic device over patients' skull defects decrease healthcare costs? 3. Can placing a prosthetic device over patients' skull defects improve recovery and return of brain function after decompressive craniectomy? Patients that experience traumatic brain injuries, brain bleeds, and large strokes can build up high levels of pressure in the skull. When this pressure can't be controlled with medications, a life-saving surgery called a decompressive hemicraniectomy (DC) is often performed. In this surgery, a large portion of the patient's skull is removed to decrease pressure on the brain and decrease permanent damage. After this surgery, many patients experience sinking of the brain in the skull as the pressure inside the head improves. The skull normally protects the brain from the outside environment. When large parts of the skull are removed, the brain is not able to regulate itself normally. This can lead to a number of problems, such as headaches, weakness, seizures, and even coma and permanent brain damage. This is referred to as "Sunken Flap Syndrome" (SFS) or "Syndrome of the Trephined" (SoT). After 3-6 months, patients can have the missing skull surgically repaired, which improves and sometimes fixes SFS, but the damage is sometimes too severe to be reversed. There are reports of patients with SFS treated with custom-made prosthetics that cover the missing piece of skull. In this study, the researchers want to see if wearing a custom-made prosthetic can prevent patients from experiencing SFS. Patients will also receive additional non-invasive measurement to see if the prosthetic can improve brain function and recovery. Finally, the researchers want to know if the prosthetic is cost-effective by decreasing the frequency that patients see doctors or receive care to treat SFS. Patients or the patient's medical decision makers will be asked if the patient wants to participate in the study after DC. If the patient or decision maker agrees to participate, the patient will be also asked if the patient wants to wear the prosthetic. The prosthetic is made of a common material used in other facial prosthetics. Patients that agree to wear the prosthetic will have a custom plate made for the participant. All patients will receive the same post-operative care and appointments whether or not the prosthetic is worn. The participant will go to the normally scheduled post-operative doctor's appointments at 2 and 4 weeks after initial DC surgery. Patient's that agree to wear the prosthetic will receive it at the 4-week post-DC appointment. The participant will then be asked to wear it as much as possible, but to let the researchers know if the participant experiences any pain, itching, discomfort or other problems. All patients will also be seen by the patient's physician before and after and after skull repair. At all appointments, patients will receive non-invasive testing of brain function. Recovery and rate of SFS will be compared between patients that do and do not wear the prosthetic. Participants will: * Go to the normally scheduled 2 and 4 week post-DC appointments * Go to the normally scheduled pre- and post-skull repair appointments * Receive additional non-invasive brain health testing at each appointment Participants that agree to wear a prosthetic will: * Receive the custom prosthetic at the 4-week post-DC appointment * Wear the prosthetic as much as possible, including at night * Take a brief survey about the prosthetic at the post-skull repair appointment
Determine the feasibility, practicality, and early efficacy of a TeleRehab program (ICARE) to improve outcomes for persons with traumatic brain injury (TBI) in recognizing and responding to others' emotions alongside their care partner (CP).