54 Clinical Trials for Various Conditions
This clinical trial studies genetically modified peripheral blood stem cell transplant in treating patients with HIV-associated non-Hodgkin or Hodgkin lymphoma. Giving chemotherapy before a peripheral stem cell transplant stops the growth of cancer cells by stopping them from dividing or killing them. After treatment, stem cells are collected from the patient's blood and stored. More chemotherapy or radiation therapy is then given to prepare the bone marrow for the stem cell transplant. Laboratory-treated stem cells are then returned to the patient to replace the blood-forming cells that were destroyed by the chemotherapy and radiation therapy
This phase I clinical trial is studying the side effects and best dose of RO4929097 when given together with capecitabine in treating patients with refractory solid tumors. RO4929097 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving RO4929097 together with chemotherapy may kill more tumor cells.
This phase I trial studies the side effects and the best dose of sunitinib malate in treating human immunodeficiency virus (HIV)-positive patients with cancer receiving antiretroviral therapy. Sunitinib malate may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the tumor.
Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. This phase II trial is studying how well topotecan hydrochloride works in treating children with meningeal cancer that has not responded to previous treatment
RATIONALE: Gathering information about how often methemoglobinemia occurs in young patients receiving dapsone for hematologic cancer or aplastic anemia may help doctors learn more about the disease and plan the best treatment. PURPOSE: This research study is looking at methemoglobinemia in young patients with hematologic cancer or aplastic anemia treated with dapsone.
RATIONALE: Vandetanib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Monoclonal antibodies, such as bevacizumab, can block cancer growth in different ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Bevacizumab and vandetanib may also stop the growth of cancer cells by blocking blood flow to the cancer. Giving vandetanib together with bevacizumab may kill more cancer cells. PURPOSE: This phase I trial is studying the side effects and best dose of vandetanib and bevacizumab in treating patients with advanced solid tumors or lymphoma.
RATIONALE: Methadone, morphine, or oxycodone may help relieve pain caused by cancer. It is not yet known whether methadone is more effective than morphine or oxycodone in treating pain in patients with cancer. PURPOSE: This randomized clinical trial is studying methadone to see how well it works compared with morphine or oxycodone in treating pain in patients with cancer.
RATIONALE: Diagnostic procedures, such as anal swab collection, digital rectal examination, and anal endoscopy and biopsy, may help find and diagnose anal and genital human papillomavirus infection and squamous intraepithelial lesions and help doctors plan better treatment. PURPOSE: This clinical trial is studying ways to detect anal and genital human papillomavirus infection and squamous intraepithelial lesions in HIV-positive patients enrolled in an AIDS cancer clinical trial.
RATIONALE: Giving high-dose chemotherapy drugs, such as carmustine, etoposide, and cyclophosphamide, before a peripheral blood stem cell transplant stops the growth of cancer cells by stopping them from dividing or killing them. After treatment, stem cells that were collected from the patient's blood are returned to the patient to replace the blood-forming cells that were destroyed by the chemotherapy. PURPOSE: This clinical trial is studying the side effects of giving high-dose carmustine, etoposide, and cyclophosphamide together with a stem cell transplant and to see how well it works in treating patients with HIV-associated lymphoma.
RATIONALE: Bortezomib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the cancer. Drugs used in chemotherapy, such as dexamethasone, ifosfamide, carboplatin, and etoposide, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Monoclonal antibodies, such as rituximab, can block cancer growth in different ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. It is not yet known whether giving bortezomib together with combination chemotherapy is more effective with or without rituximab in treating AIDS-related non-Hodgkin lymphoma. PURPOSE: This clinical trial is studying giving bortezomib together with dexamethasone, ifosfamide, carboplatin, and etoposide to see how well it works with or without rituximab in treating patients with relapsed or refractory AIDS-related non-Hodgkin lymphoma.
RATIONALE: Drugs used in chemotherapy, such as topotecan, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. PURPOSE: This phase I trial is studying the side effects, best way to give, and best dose of topotecan when given by intraventricular infusion in treating young patients with neoplastic meningitis due to leukemia, lymphoma, or solid tumors.
RATIONALE: Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. Combining more than one drug may kill more cancer cells. PURPOSE: Phase II trial to study the effectiveness of combining lomustine, etoposide, cyclophosphamide, and procarbazine in treating patients who have AIDS-related non-Hodgkin's lymphoma.
RATIONALE: Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. Peripheral stem cell transplantation may allow the doctor to give higher doses of chemotherapy drugs and kill more cancer cells. PURPOSE: Phase II trial to study the effectiveness of chemotherapy followed by peripheral stem cell transplantation in treating patients who have recurrent or refractory AIDS-related lymphoma.
RATIONALE: Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. Combining more than one drug may kill more cancer cells. PURPOSE: Phase I trial to study the effectiveness of liposomal doxorubicin plus combination chemotherapy in treating patients who have AIDS-associated non-Hodgkin's lymphoma.
RATIONALE: Inserting the gene for RevM10 into a person's peripheral stem cells may improve the body's ability to fight cancer or make the cancer more sensitive to chemotherapy. PURPOSE: Phase I/II trial to study the effectiveness of RevM10-treated stem cells plus chemotherapy and peripheral stem cell transplantation in treating patients who have HIV-related non-Hodgkin's lymphoma.
RATIONALE: Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. Combining more than one drug may kill more cancer cells. PURPOSE: Phase II trial to study the effectiveness of combination chemotherapy consisting of liposomal doxorubicin, cyclophosphamide, vincristine, and prednisone in treating patients with AIDS-related lymphoma.
RATIONALE: Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. PURPOSE: Phase II trial to study the effectiveness of bleomycin in treating patients with non-Hodgkin's lymphoma.
RATIONALE: Chemotherapy uses different ways to stop cancer cells from dividing so they stop growing or die. PURPOSE: Phase II trial to study the effectiveness of gallium nitrate in treating patients with AIDS-related non-Hodgkin's lymphoma.
This phase II trial studies how well a dose adjusted regimen consisting of etoposide, prednisone, vincristine sulfate, cyclophosphamide, and doxorubicin hydrochloride (EPOCH) works in combination with ofatumumab or rituximab in treating patients with Burkitt lymphoma that is newly diagnosed, or has returned after a period of improvement (relapsed), or has not responded to previous treatment (refractory) or relapsed or refractory acute lymphoblastic leukemia. Drugs used in chemotherapy, such as etoposide, prednisone, vincristine sulfate, cyclophosphamide, and doxorubicin hydrochloride, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Monoclonal antibodies, such as ofatumumab and rituximab, may interfere with the ability of cancer cells to grow and spread. Giving more than one drug (combination chemotherapy) together with monoclonal antibody therapy may kill more cancer cells.
RATIONALE: Interferon alfa may interfere with the growth of cancer cells. PURPOSE: Phase II trial to study the effectiveness of interferon alfa in treating children with an HIV-related cancer including leukemia, non-Hodgkin's lymphoma, CNS lymphoma, or other solid tumors.
This phase I trial is studying the side effects and best dose of EMD 121974 in treating patients with solid tumors or lymphoma. Cilengitide (EMD 121974) may stop the growth of cancer cells by stopping blood flow to the cancer
Phase I trial to study the effectiveness of radiolabeled monoclonal antibody therapy with or without peripheral stem cell transplantation in treating patients who have recurrent or refractory lymphoma. Radiolabeled monoclonal antibodies can locate cancer cells and deliver radioactive tumor-killing substances to them without harming normal cells. Peripheral stem cell transplantation may be able to replace immune cells that were destroyed by anticancer therapy
Drugs used in chemotherapy work in different ways to stop cancer cells from dividing so they stop growing or die. This phase I trial is studying the side effects and best dose of 17-N-allylamino-17-demethoxygeldanamycin in treating patients with advanced epithelial cancer, malignant lymphoma, or sarcoma
Phase I trial to study genetic testing and the effectiveness of irinotecan in treating patients who have solid tumors and lymphoma. Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. Genetic testing for a specific enzyme may help doctors determine whether side effects from or response to chemotherapy are related to a person's genetic makeup
This phase I trial is studying the side effects and best dose of giving tanespimycin together with bortezomib in treating patients with advanced solid tumors or lymphomas. (Accrual for lymphoma patients closed as of 11/27/09) Drugs used in chemotherapy, such as tanespimycin, work in different ways to stop cancer cells from dividing so they stop growing or die. Bortezomib may stop the growth of cancer cells by blocking the enzymes necessary for their growth. It may also increase the effectiveness of tanespimycin by making cancer cells more sensitive to the drug. Combining tanespimycin with bortezomib may kill more cancer cells.
Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. Phase I trial to study the effectiveness of imatinib mesylate in treating patients who have advanced cancer and liver dysfunction
RATIONALE: Measuring the number of radiolabeled white blood cells in non-Hodgkin's lymphoma tumors may help doctors predict how well patients will respond to treatment, and may help the study of cancer in the future. PURPOSE: This study is measuring radiolabeled white blood cells in patients with non-Hodgkin's lymphoma.
RATIONALE: Epoetin alfa and darbepoetin alfa may cause the body to make more red blood cells. They are used to treat anemia caused by chemotherapy in patients with cancer. PURPOSE: This randomized clinical trial is studying four different schedules of epoetin alfa or darbepoetin alfa to compare how well they work in treating patients with anemia caused by chemotherapy.
RATIONALE: Epoetin alfa may cause the body to make more red blood cells. It is used to treat anemia caused by cancer and chemotherapy. PURPOSE: This randomized phase II trial is studying how well epoetin alfa works in treating patients with anemia who are undergoing chemotherapy for cancer.
RATIONALE: Monoclonal antibodies such as rituximab can locate cancer cells and either kill them or deliver cancer-killing substances to them without harming normal cells. Beta-glucan may increase the effectiveness of rituximab by making cancer cells more sensitive to the monoclonal antibody. PURPOSE: This phase I trial is studying the side effects and best dose of beta-glucan when given together with rituximab in treating young patients with relapsed or progressive lymphoma or leukemia or with lymphoproliferative disorder related to donor stem cell transplantation.