350 Clinical Trials for Various Conditions
This phase 2 study evaluates the sequential combination of decitabine then midostaurin for the treatment of newly-diagnosed acute myeloid leukemia (AML) in older patients.
RATIONALE: Giving low doses of chemotherapy before a donor stem cell transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving antithymocyte globulin before the transplant and tacrolimus and methotrexate after the transplant may stop this from happening. PURPOSE: This phase II trial is studying how well giving antithymocyte globulin together with cyclophosphamide, busulfan, and fludarabine works in treating patients with hematological cancer or kidney cancer undergoing donor stem cell transplant.
Ex vivo expanded human myeloid progenitor cells (hMPCs; CLT-008) have the potential to accelerate neutrophil recovery in patients receiving myeloablative conditioning as part of an umbilical cord blood transplant for hematologic cancer. In this study, the safety and tolerability of CLT-008 administered 24 hours after an umbilical cord blood transplant will be determined by monitoring for adverse reactions, neutrophil and platelet recovery, hematopoietic chimerism, graft-versus-host disease (GVHD), and infections.
This pilot trial studies decitabine, donor natural killer cells, and aldesleukin in treating patients with acute myeloid leukemia that has come back after previous treatment (relapsed) or has not responded to previous treatment (refractory). Drugs used in chemotherapy, such as decitabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving donor natural killer cells after decitabine may boost the patient's immune system by helping it see the remaining cancer cells as not belonging in the patient's body and causing it to destroy them (called graft-versus-tumor effect). Aldesleukin may stimulate natural killer cells to kill acute myeloid leukemia cells. Giving decitabine, donor natural killer cells, and aldesleukin may be a better treatment for acute myeloid leukemia.
This pilot clinical trial studies if cells donated by a close genetic relative can help maintain acute myeloid leukemia (AML) complete remission (CR). Eligible patients will receive a standard induction chemotherapy. If a complete remission results they will receive irradiated allogeneic cells from a HLA haploidentical relative. Only patients who obtain a CR after the standard induction chemotherapy are eligible for the experimental therapy (irradiated haploidentical cells).
This phase II trial studies the safety and efficacy of total marrow and lymphoid irradiation (TMLI) in combination with two chemotherapy drugs, etoposide and cyclophosphamide, as a preparative regimen before donor stem cell transplant in treating patients with high-risk acute lymphocytic leukemia (ALL) or acute myeloid leukemia (AML) who have failed previous therapy. Intensity-modulated radiation therapy (IMRT) uses imaging to provide a three-dimensional view of the area to be irradiated. Doctors can then shape and direct the radiation beams at the area from multiple directions while avoiding, as much as possible, nearby organs. TMLI is a method of using IMRT to direct radiation to the bone marrow. Radiation therapy is given before transplant to suppress the immune system, prevent rejection of the transplanted cells, and wipe out any remaining cancer cells. TMLI may allow a greater radiation dose to be delivered to the bone marrow as a preparative regimen before transplant while causing fewer side effects than standard radiation therapy.
This clinical trial uses a laboratory test called a high throughput sensitivity assay in planning treatment for patients with relapsed or refractory acute myeloid leukemia. The aim is to try to identify drugs that may be effective in killing leukemia cells for those patients who will not be cured with conventional chemotherapy. This assay will test multiple drugs simultaneously against a patient's own donated blood sample. The goal is to use this laboratory assay to best match a drug to a patient's disease.
The purpose of the study is to determine if metformin in combination with cytarabine is safe and effective. Participants in this research study have acute myeloid leukemia (AML) that has come back after initial treatment or has not gone away with initial therapy.There is evidence that metformin directly kills leukemia cells. Laboratory data have also shown that combinations of metformin with cytarabine are more efficient than each agent alone in killing leukemia cells in the laboratory.
This phase I trial studies the side effects and best dose of AR-42 when given together with decitabine in treating patients with acute myeloid leukemia. AR-42 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as decitabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving AR-42 together with decitabine may kill more cancer cells.
The goals of this study are to learn about the effectiveness, the side-effects, if waiting to give the idarubicin and cytarabine may change the side effects or effectiveness, and to identify factors to predict for responses to this therapy. The trial will examine combination of three chemotherapy drugs. These drugs are decitabine, idarubicin, and cytarabine.
RATIONALE: Bortezomib and midostaurin may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as mitoxantrone hydrochloride, etoposide, and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving bortezomib and midostaurin together with combination chemotherapy may kill more cancer cells. PURPOSE: This phase I trial is studying the side effects and best dose of bortezomib when given together with midostaurin with or without combination chemotherapy in treating patients with relapsed or refractory acute myeloid leukemia.
This phase I/II trial is studying the side effects and best dose of bendamustine hydrochloride when given together with idarubicin in treating older patients with previously untreated acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS). Drugs used in chemotherapy, such as bendamustine hydrochloride or idarubicin, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more cancer cells
The purpose of this study is to test the safety of vorinostat (Zolinza) and azacitidine (Vidaza) when combined with gemtuzumab ozogamicin (GO) at different dose levels. These drugs increase the effect of GO against leukemia cells in the test tube, but we don't know yet whether they also increase the anti-leukemia effect of GO in people.
This phase I/II trial studied the side effects and best dose of clofarabine when given together with cytarabine and to see how well they work in treating older patients with acute myeloid leukemia (AML) or high-risk myelodysplastic syndromes (MDS) that have relapsed or not responded to treatment.
This randomized phase II trial is comparing three different combination chemotherapy regimens to see how well they work in treating patients with relapsed or refractory acute myeloid leukemia. Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more cancer cells. It is not yet known which combination chemotherapy regimen is more effective in treating patients with relapsed or refractory acute myeloid leukemia.
Tipifarnib may stop the growth of cancer cells by blocking the enzymes necessary for their growth. Phase II trial to study the effectiveness of tipifarnib in treating patients who have acute myeloid leukemia or myelodysplastic syndrome in first complete remission
This phase I trial studies the side effects and best dose of selinexor when given together with etoposide with or without mitoxantrone hydrochloride and cytarabine in treating patients with acute myeloid leukemia that has returned (relapsed) or has not responded to treatment (refractory). Selinexor may help stop the growth of tumor cells by blocking an enzyme needed for cancer cell growth. Drugs used in chemotherapy, such as etoposide, mitoxantrone hydrochloride, and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving chemotherapy together with selinexor work better in treating relapsed or refractory acute myeloid leukemia.
This randomized phase II trial studies how well choline magnesium trisalicylate with idarubicin and cytarabine works in treating patients with acute myeloid leukemia. Drugs used in chemotherapy, such as choline magnesium trisalicylate, idarubicin, and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. It is not yet know whether choline magnesium trisalicylate and combination chemotherapy is more effective than combination chemotherapy alone in treating patients with acute myeloid leukemia.
This pilot clinical trial aims to assess feasibility and tolerability of using an LINAC based "organ-sparing marrow-targeted irradiation" to condition patients with high-risk hematological malignancies who are otherwise ineligible to undergo myeloablative Total body irradiation (TBI)-based conditioning prior to allogeneic stem cell transplant. The target patient populations are those with ALL, AML, MDS who are either elderly (\>50 years of age) but healthy, or younger patients with worse medical comorbidities (HCT-Specific Comorbidity Index Score (HCT-CI) \> 4). The goal is to have the patients benefit from potentially more efficacious myeloablative radiation based conditioning approach without the side effects associated with TBI.
This randomized phase III trial studies clofarabine to see how well it works compared with daunorubicin hydrochloride and cytarabine when followed by decitabine or observation in treating older patients with newly diagnosed acute myeloid leukemia. Drugs used in chemotherapy, such as clofarabine, daunorubicin hydrochloride, cytarabine, and decitabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more cancer cells. It is not yet known which chemotherapy regimen is more effective in treating acute myeloid leukemia.
This phase II trial studies how well eltrombopag olamine works in improving the recovery of platelet counts in older patients with Acute Myeloid Leukemia (AML) undergoing induction (the first treatment given for a disease) chemotherapy. Platelet counts recover more slowly in older patients, leading to risk of complications and the delay of post-remission therapy. Eltrombopag olamine may cause the body to make platelets after chemotherapy.
This phase I trial studies the MEK inhibitor MEK162 to see if it is safe in patients when combined with idarubicin and cytarabine. MEK inhibitor MEK162 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as idarubicin and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving MEK inhibitor MEK162, cytarabine, and idarubicin may be an effective treatment for acute myeloid leukemia.
This phase 2 trial studies how well ixazomib(MLN9708) works in treating study participants with relapsed or refractory acute myeloid leukemia. Ixazomib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
This phase II trial studies the side effects and how well omacetaxine mepesuccinate, cytarabine, and decitabine work in treating older patients with newly diagnosed acute myeloid leukemia. Omacetaxine mepesuccinate, cytarabine, and decitabine may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
This phase 2 clinical trial studies how well CPX-351 (liposomal cytarabine-daunorubicin) works in treating patients with relapsed or refractory acute myeloid leukemia or myelodysplastic syndrome. Drugs used in chemotherapy, such as CPX-351, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing.
This phase I trial studies the side effects and the best dose of lenalidomide when given together with combination chemotherapy in treating patients with relapsed or refractory acute myeloid leukemia. Lenalidomide may stop the growth of acute myeloid leukemia by blocking blood flow to the cancer. Drugs used in chemotherapy, such as mitoxantrone hydrochloride, etoposide, and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving lenalidomide and combination chemotherapy may be an effective treatment for acute myeloid leukemia.
This phase I/II trial studies the side effects and best dose of dasatinib when given together with cytarabine and idarubicin hydrochloride and to see how well they work in treating patients with acute myeloid leukemia that is likely to come back or spread. Dasatinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as cytarabine and idarubicin hydrochloride, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving dasatinib together with cytarabine and idarubicin hydrochloride may be a better treatment for acute myeloid leukemia.
This randomized phase II trial studies how well cytarabine with or without SCH 900776 works in treating adult patients with relapsed acute myeloid leukemia. Drugs used in chemotherapy, such as cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells or stopping them from dividing. SCH 900776 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. It is not yet known whether cytarabine is more effective with or without SCH 900776 in treating acute myeloid leukemia.
This clinical trial studies gemtuzumab ozogamicin in treating patients with relapsed or refractory acute myeloid leukemia or acute promyelocytic leukemia. Monoclonal antibodies, such as gemtuzumab ozogamicin, can block cancer growth in different ways. Some block the ability of cancer to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them.
This clinical trial studies bioelectrical impedance measurement for predicting treatment outcome in patients with newly diagnosed acute leukemia. Diagnostic procedures, such as bioelectrical impedance measurement, may help predict a patient's response to treatment for acute leukemia.