39 Clinical Trials for Various Conditions
Study AG120-C-009 is a global, Phase 3, multicenter, double-blind, randomized, placebo-controlled clinical trial to evaluate the efficacy and safety of AG-120 (ivosidenib) + azacitidine vs placebo + azacitidine in adult participants with previously untreated IDH1m AML who are considered appropriate candidates for non-intensive therapy. The primary endpoint is event-free survival (EFS). The key secondary efficacy endpoints are overall survival (OS), rate of complete remission (CR), rate of CR and complete remission with partial hematologic recovery (CRh), and overall response rate (ORR). Participants eligible for study treatment based on Screening assessments will be randomized 1:1 to receive oral AG-120 or matched placebo, both administered in combination with subcutaneous (SC) or intravenous (IV) azacitidine. An estimated 200 participants will take part in the study.
The purpose of this Phase I, multicenter, clinical trial is to evaluate the safety of AG-120 and AG-221 when given in combination with standard AML induction and consolidation therapy. The study plans to evaluate up to 2 dose levels of AG-120 in participants with an isocitrate dehydrogenase protein 1 (IDH1) mutation and up to 2 dose levels of AG-221 in participants with an isocitrate dehydrogenase protein 2 (IDH2) mutation. AG-120 or AG-221 will be administered with 2 types of AML induction therapies (cytarabine with either daunorubicin or idarubicin) and 2 types of AML consolidation therapies (mitoxantrone with etoposide \[ME\] or cytarabine). After consolidation therapy, participants may continue on to maintenance therapy and receive daily treatment with single-agent AG-120 or AG-221 until relapse, development of an unacceptable toxicity, or hematopoietic stem cell transplant (HSCT). The study will end when all participants have discontinued study treatment.
This phase II trial studies how well liposome-encapsulated daunorubicin-cytarabine (CPX-351) works in treating patients with secondary acute myeloid leukemia who are younger than 60 years old. Drugs used in chemotherapy, such as CPX-351, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.
This phase II trial studies the side effects and how well liposome-encapsulated daunorubicin-cytarabine and gemtuzumab ozogamicin work in treating patients with acute myeloid leukemia that has come back (relapsed) or that does not respond to treatment (refractory) or high risk myelodysplastic syndrome. Drugs used in chemotherapy, such as liposome-encapsulated daunorubicin-cytarabine, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Gemtuzumab ozogamicin is a monoclonal antibody, called gemtuzumab, linked to a toxic agent called calicheamicin. Gemtuzumab ozogamicin attached to CD33 positive cancer cells in a targeted way and delivers calicheamicin to kill them. Giving liposome-encapsulated daunorubicin-cytarabine and gemtuzumab ozogamicin together may be an effective treatment for relapsed or refractory acute myeloid leukemia or high risk myelodysplastic syndrome.
This phase Ib/II trial studies the side effects and best dose of pevonedistat and to see how well it works in combination with cytarabine and idarubicin in treating patients with acute myeloid leukemia. Pevonedistat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as cytarabine and idarubicin, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Given pevonedistat, cytarabine, and idarubicin may work better in treating patients with acute myeloid leukemia.
This trial studies the side effects of recombinant EphB4-HSA fusion protein when given together with azacitidine or decitabine in treating patients with myelodysplastic syndrome, chronic myelomonocytic leukemia, or acute myeloid leukemia that has come back or has not responded to previous treatment with a hypomethylating agent. Recombinant EphB4-HSA fusion protein may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Hypomethylating agents, such as azacitidine and decitabine, slow down genes that promote cell growth and can kill cells that are dividing rapidly. Giving recombinant EphB4-HSA fusion protein together with azacitidine or decitabine may work better in treating patients with myelodysplastic syndrome, chronic myelomonocytic leukemia, or acute myeloid leukemia.
This phase II trial studies how well nivolumab works in treating patients with acute myeloid leukemia that has decreased or disappeared but may still be in the body (remission), and is at high risk for returning (relapse). Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread.
This phase I trial studies the best dose and side effects of liposomal cytarabine, daunorubicin, and gemtuzumab ozogamicin in treating pediatric patients with acute myeloid leukemia that has returned after treatment (relapsed) or does not respond to treatment (refractory). Chemotherapy drugs, such as liposomal cytarabine and daunorubicin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Gemtuzumab ozogamicin is a monoclonal antibody, called gemtuzumab, linked to a toxic agent called ozogamicin. Gemtuzumab attaches to CD33 positive cancer cells in a targeted way and delivers ozogamicin to kill them. Giving liposomal cytarabine and daunorubicin and gemtuzumab ozogamicin may help to control the disease.
This phase I trial studies the side effects and best dose of ruxolitinib when given together with venetoclax and compares the effect of ruxolitinib in combination with venetoclax to venetoclax and azacitidine in treating patients with acute myeloid leukemia (AML) that has come back (relapsed) or has not responded to treatment (refractory). Ruxolitinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Azacitidine stops cells from making deoxyribonucleic acid and may kill cancer cells. It is a type of antimetabolite. Venetoclax is in a class of medications called B-cell lymphoma-2 (BCL-2) inhibitors. It may stop the growth of cancer cells by blocking Bcl-2, a protein needed for cancer cell survival. Giving ruxolitinib in combination with venetoclax and azacitidine may be safe, tolerable, and/or effective compare to ruxolitinib with venetoclax in treating patients with relapsed or refractory AML.
This phase I trial studies the side effects and how well pevonedistat, azacitidine, fludarabine phosphate, and cytarabine work in treating patients with acute myeloid leukemia or myelodysplastic syndrome that has come back (relapsed) or has not responded to treatment (refractory). Pevonedistat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Chemotherapy drugs, such as azacitidine, fludarabine phosphate, and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving more than one drug (combination chemotherapy) and pevonedistat may work better in treating patients with acute myeloid leukemia or myelodysplastic syndrome.
This phase I trial studies the side effects and best dose of recombinant EphB4-HSA fusion protein when given together with cytarabine or vincristine liposomal in treating participants with acute leukemia that has come back or has not responded to treatment. Drugs used in chemotherapy, such as recombinant ephb4-HSA fusion protein, cytarabine, and vincristine liposomal, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving the drugs in different combinations may kill more cancer cells.
This phase Ib/II trial studies the best dose and side effects of avelumab when given together with azacitidine and to see how well they work in treating patients with acute myeloid leukemia that is not responding to treatment or has come back. Monoclonal antibodies, such as avelumab, may interfere with the ability of cancer cells to grow and spread. Azacitidine may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving avelumab and azacitidine may work better in treating patients with acute myeloid leukemia.
This phase I trial studies the side effects and best dose of anti-PR1/HLA-A2 monoclonal antibody Hu8F4 (Hu8F4) in treating patients with malignancies related to the blood (hematologic). Monoclonal antibodies, such as Hu8F4, may interfere with the ability of cancer cells to grow and spread.
This phase I/II trial studies the side effects and best dose of 8-chloroadenosine and to see how well it works in treating patients with acute myeloid leukemia that has returned after a period of improvement (relapsed) or does not respond to treatment (refractory). Drugs used in chemotherapy, such as 8-chloroadenosine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.
This phase I/II trial studies the side effects and best dose of lenalidomide and how well it works in treating older patients with acute myeloid leukemia (AML) who have undergone stem cell transplant. Biological therapies, such as lenalidomide, may stimulate the immune system in different ways and stop cancer cells from growing.
This phase I trial studies the side effects and best dose of ipilimumab and how well it works in treating patients with high-risk myelodysplastic syndrome or acute myeloid leukemia that has come back or no longer responds to treatment. Monoclonal antibodies, such as ipilimumab, may interfere with the ability of cancer cells to grow and spread.
This pilot phase II trial studies how well erlotinib hydrochloride works in treating patients with relapsed or refractory acute myeloid leukemia. Erlotinib hydrochloride may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
This phase II trial studies how well targeted therapy works in treating patients with acute lymphoblastic leukemia or acute myelogenous leukemia that has come back after a period of improvement or does not respond to treatment. Testing patients' blood or bone marrow to find out if their type of cancer may be sensitive to a specific drug may help doctors choose more effective treatments. Dasatinib, sunitinib malate, sorafenib tosylate, ponatinib hydrochloride, pacritinib, ruxolitinib, and idelalisib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving targeted therapy based on cancer type may be an effective treatment for acute lymphoblastic leukemia or acute myelogenous leukemia.
This phase I trial studies the side effects and best dose of lenalidomide when given together with cytarabine and idarubicin in treating patients with acute myeloid leukemia. Biological therapies, such as lenalidomide, may stimulate the immune system in different ways and stop cancer cells from growing. Drugs used in chemotherapy, such as cytarabine and idarubicin, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving lenalidomide together with cytarabine and idarubicin may kill more cancer cells.
This phase I trial studies the side effects and best dose of iodine I 131monoclonal antibody BC8 when given together with fludarabine phosphate, cyclophosphamide, total-body irradiation, and donor bone marrow transplant, and to see how well they work in treating patients with acute myeloid leukemia or acute lymphoblastic leukemia that has spread to nearby or other places in the body (advanced), or high-risk myelodysplastic syndrome. Giving chemotherapy drugs, such as fludarabine phosphate and cyclophosphamide, and total-body irradiation before a donor bone marrow transplant helps stop the growth of cancer or abnormal cells and helps stop the patient's immune system from rejecting the donor's stem cells. Also, radiolabeled monoclonal antibodies, such as iodine I 131 monoclonal antibody BC8, can find cancer cells and carry cancer-killing substances to them without harming normal cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving cyclophosphamide together with mycophenolate mofetil and tacrolimus after the transplant may stop this from happening. Giving a radiolabeled monoclonal antibody together with donor stem cell transplant, fludarabine phosphate, cyclophosphamide, mycophenolate mofetil, and tacrolimus may be an effective treatment for advanced acute myeloid leukemia, acute lymphoblastic leukemia, or myelodysplastic syndromes.
This randomized phase II trial studies azacitidine with or without entinostat to see how well they work compared to azacitidine alone in treating patients with myelodysplastic syndromes, chronic myelomonocytic leukemia, or acute myeloid leukemia. Drugs used in chemotherapy, such as azacitidine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Entinostat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving azacitidine together with entinostat may work better in treating patients with myelodysplastic syndromes, chronic myelomonocytic leukemia, or acute myeloid leukemia.
This randomized phase III trial studies tipifarnib in treating patients with acute myeloid leukemia (AML) in remission. Tipifarnib may stop the growth of cancer cells by blocking the enzymes necessary for their growth. It is not yet known whether tipifarnib is more effective than observation alone in preventing the recurrence of AML.
This phase II trial studies how well vosaroxin and cytarabine work in treating patients with untreated acute myeloid leukemia. Drugs used in chemotherapy, such as vosaroxin and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.
This phase II trial studies how well clofarabine and melphalan before a donor stem cell transplant works in treating patients with a decrease in or disappearance of signs and symptoms of myelodysplasia or acute leukemia (disease is in remission), or chronic myelomonocytic leukemia. Giving chemotherapy, such as clofarabine and melphalan, before a donor stem cell transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into a patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Giving clofarabine and melphalan before transplant may help prevent the cancer from coming back after transplant, and they may cause fewer side effects than standard treatment.
This phase II trial studies how well olaparib works in treating patients with acute myeloid leukemia that has come back (relapsed) or does not respond to treatment (refractory), or myelodysplastic syndrome. Patients must also have a change in the gene called the IDH gene (IDH mutation). Olaparib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
This phase I/II trial studies the side effects and best dose of a radioactive agent linked to an antibody (211At-BC8-B10) followed by donor stem cell transplant in treating patients with high-risk acute leukemia or myelodysplastic syndrome that has come back (recurrent) or isn't responding to treatment (refractory). 211At-BC8-B10 is a monoclonal antibody that may interfere with the ability of cancer cells to grow and spread. Giving chemotherapy and total body irradiation before a stem cell transplant helps stop the growth of cells in the bone marrow, including normal blood-forming cells (stem cells) and cancer cells. When the healthy stem cells from a donor are infused into the patient, they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can attack the body's normal cells, called graft versus host disease. Giving cyclophosphamide, mycophenolate mofetil, and tacrolimus after a transplant may stop this from happening.
This phase I trial studies the side effects and best dose of edetate calcium disodium or succimer in treating patients with acute myeloid leukemia or myelodysplastic syndrome undergoing chemotherapy. Edetate calcium disodium or succimer may help to lower the level of metals found in the bone marrow and blood and may help to control the disease and/or improve response to chemotherapy.
This phase II trial studies how well 3 different drug combinations prevent graft versus host disease (GVHD) after donor stem cell transplant. Calcineurin inhibitors, such as cyclosporine and tacrolimus, may stop the activity of donor cells that can cause GVHD. Chemotherapy drugs, such as cyclophosphamide and methotrexate, may also stop the donor cells that can lead to GVHD while not affecting the cancer-fighting donor cells. Immunosuppressive therapy, such as anti-thymocyte globulin (ATG), is used to decrease the body's immune response and reduces the risk of GVHD. It is not yet known which combination of drugs: 1) ATG, methotrexate, and calcineurin inhibitor 2) cyclophosphamide and calcineurin inhibitor, or 3) methotrexate and calcineurin inhibitor may work best to prevent graft versus host disease and result in best overall outcome after donor stem cell transplant.
This phase II trial studies how well venetoclax and decitabine work in treating participants with acute myeloid leukemia that has come back or does not respond to treatment, or with high-risk myelodysplastic syndrome that has come back. Drugs used in chemotherapy, such as venetoclax and decitabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.
This phase I/II trial studies the side effects and best dose of 211\^astatine(At)-BC8-B10 before donor stem cell transplant in treating patients with high-risk acute myeloid leukemia, acute lymphoblastic leukemia, myelodysplastic syndrome, or mixed-phenotype acute leukemia. Radioactive substances, such as astatine-211, linked to monoclonal antibodies, such as BC8, can bind to cancer cells and give off radiation which may help kill cancer cells and have less of an effect on healthy cells before donor stem cell transplant.