Treatment Trials

301 Clinical Trials for Various Conditions

Focus your search

ACTIVE_NOT_RECRUITING
Decitabine, Venetoclax, and Ponatinib for the Treatment of Philadelphia Chromosome-Positive Acute Myeloid Leukemia or Myeloid Blast Phase or Accelerated Phase Chronic Myelogenous Leukemia
Description

This phase II trial studies how well the combination of decitabine, venetoclax, and ponatinib work for the treatment of Philadelphia chromosome-positive acute myeloid leukemia or myeloid blast phase or accelerated phase chronic myelogenous leukemia. Drugs used in chemotherapy such as decitabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Venetoclax may stop the growth of cancer cells by blocking Bcl-2, a protein needed for cancer cell survival. Ponatinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving decitabine, venetoclax, and ponatinib may help to control Philadelphia chromosome-positive acute myeloid leukemia or myeloid blast phase or accelerated phase chronic myelogenous leukemia.

COMPLETED
Fludarabine and Radiation Therapy in Treating Patients Who Are Undergoing Donor Stem Cell Transplant for Chronic Phase or Accelerated Phase Chronic Myelogenous Leukemia
Description

RATIONALE: Giving low doses of chemotherapy, such as fludarabine, and radiation therapy before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells. It also stops the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune system and help destroy any remaining cancer cells (graft-versus-tumor effect). Giving an infusion of the donor's T cells (donor lymphocyte infusion) or interferon alfa after the transplant may help increase this effect. Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving cyclosporine and mycophenolate mofetil after the transplant may stop this from happening. PURPOSE: This phase II trial is studying how well giving fludarabine together with radiation therapy works in treating patients who are undergoing donor stem cell transplant for chronic phase or accelerated phase chronic myelogenous leukemia.

Conditions
COMPLETED
Study of Dasatinib (BMS-354825) in Patients With Accelerated Phase Chronic Myeloid Leukemia
Description

The purpose of this clinical research study is to learn if BMS-354825 will have activity, defined by hematologic response, in subjects who have accelerated phase chronic myeloid leukemia (CML) who are resistant to or intolerant to imatinib mesylate. The safety of this treatment will also be studied.

COMPLETED
STI571 in Treating Patients With Accelerated Phase Chronic Myelogenous Leukemia
Description

RATIONALE: STI571 may interfere with the growth of cancer cells and may be effective treatment for chronic myelogenous leukemia. PURPOSE: Phase II trial to study the effectiveness of STI571 in treating patients who have accelerated phase chronic myelogenous leukemia.

Conditions
ACTIVE_NOT_RECRUITING
Triplex Vaccine in Preventing CMV Infection in Patients Undergoing Hematopoietic Stem Cell Transplantation
Description

This phase II trial studies how well Triplex vaccine works in preventing cytomegalovirus (CMV) infection in patients undergoing a hematopoietic stem cell transplantation. CMV is a virus that may be carried for life and does not cause illness in most healthy individuals. However, in people whose immune systems are lowered (such as those undergoing stem cell transplantation), CMV can reproduce and cause disease and even death. The Triplex vaccine is made up of 3 small pieces of CMV deoxyribonucleic acid (DNA) (the chemical form of genes) placed into a weakened virus called modified vaccinia Ankara (MVA) that may help produce immunity (the ability to recognize and respond to an infection) and reduce the risk of developing complications related to CMV infection.

TERMINATED
Serial Measurements of Molecular and Architectural Responses to Therapy (SMMART) PRIME Trial
Description

This phase Ib trial determines if samples from a patient's cancer can be tested to find combinations of drugs that provide clinical benefit for the kind of cancer the patient has. This study is also being done to understand why cancer drugs can stop working and how different cancers in different people respond to different types of therapy.

Conditions
Accelerated Phase Chronic Myelogenous Leukemia, BCR-ABL1 PositiveAnatomic Stage IV Breast Cancer AJCC v8AnemiaAnn Arbor Stage III Hodgkin LymphomaAnn Arbor Stage III Non-Hodgkin LymphomaAnn Arbor Stage IV Hodgkin LymphomaAnn Arbor Stage IV Non-Hodgkin LymphomaAtypical Chronic Myeloid Leukemia, BCR-ABL1 NegativeBlast Phase Chronic Myelogenous Leukemia, BCR-ABL1 PositiveCastration-Resistant Prostate CarcinomaChronic Phase Chronic Myelogenous Leukemia, BCR-ABL1 PositiveHematopoietic and Lymphoid System NeoplasmLocally Advanced Pancreatic AdenocarcinomaMetastatic Breast CarcinomaMetastatic Malignant Solid NeoplasmMetastatic Pancreatic AdenocarcinomaMyelodysplastic/Myeloproliferative Neoplasm With Ring Sideroblasts and ThrombocytosisMyelodysplastic/Myeloproliferative Neoplasm, UnclassifiablePrimary MyelofibrosisRecurrent Acute Lymphoblastic LeukemiaRecurrent Acute Myeloid LeukemiaRecurrent Chronic Lymphocytic LeukemiaRecurrent Chronic Myelogenous Leukemia, BCR-ABL1 PositiveRecurrent Hematologic MalignancyRecurrent Hodgkin LymphomaRecurrent Myelodysplastic SyndromeRecurrent Myelodysplastic/Myeloproliferative NeoplasmRecurrent Myeloproliferative NeoplasmRecurrent Non-Hodgkin LymphomaRecurrent Plasma Cell MyelomaRecurrent Small Lymphocytic LymphomaRefractory Acute Lymphoblastic LeukemiaRefractory Acute Myeloid LeukemiaRefractory Chronic Lymphocytic LeukemiaRefractory Chronic Myelogenous Leukemia, BCR-ABL1 PositiveRefractory Chronic Myelomonocytic LeukemiaRefractory Hematologic MalignancyRefractory Hodgkin LymphomaRefractory Malignant Solid NeoplasmRefractory Myelodysplastic SyndromeRefractory Myelodysplastic/Myeloproliferative NeoplasmRefractory Non-Hodgkin LymphomaRefractory Plasma Cell MyelomaRefractory Primary MyelofibrosisRefractory Small Lymphocytic LymphomaStage II Pancreatic Cancer AJCC v8Stage III Pancreatic Cancer AJCC v8Stage IV Pancreatic Cancer AJCC v8Stage IV Prostate Cancer AJCC v8Unresectable Pancreatic Adenocarcinoma
WITHDRAWN
Multi-antigen CMV-Modified Vaccinia Ankara Vaccine in Reducing CMV Related Complications in Patients With Blood Cancer Undergoing Donor Stem Cell Transplant
Description

This randomized phase II trial studies how well multi-antigen cytomegalovirus (CMV)-modified vaccinia Ankara vaccine works in reducing CMV related complications in patients with blood cancer who are undergoing donor stem cell transplant. Vaccines made from a gene-modified virus may help the body build an effective immune response to kill cancer cells.

ACTIVE_NOT_RECRUITING
Fludarabine Phosphate, Cyclophosphamide, Total Body Irradiation, and Donor Stem Cell Transplant in Treating Patients With Blood Cancer
Description

This phase II trial studies how well fludarabine phosphate, cyclophosphamide, total body irradiation, and donor stem cell transplant work in treating patients with blood cancer. Drugs used in chemotherapy, such as fludarabine phosphate and cyclophosphamide, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high energy x-rays to kill cancer cells and shrink tumors. Giving chemotherapy and total-body irradiation before a donor peripheral blood stem cell transplant helps stop the growth of cells in the bone marrow, including normal blood-forming cells (stem cells) and cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. The donated stem cells may also replace the patient?s immune cells and help destroy any remaining cancer cells.

RECRUITING
Blinatumomab, Methotrexate, Cytarabine, and Ponatinib in Treating Patients With Philadelphia Chromosome-Positive, or BCR-ABL Positive, or Relapsed/Refractory, Acute Lymphoblastic Leukemia
Description

This phase II trial studies how well blinatumomab, methotrexate, cytarabine, and ponatinib work in treating patients with Philadelphia chromosome (Ph)-positive, or BCR-ABL positive, or acute lymphoblastic leukemia that has come back or does not respond to treatment. Immunotherapy with monoclonal antibodies, such as blinatumomab, may induce changes in body's immune system and may interfere with the ability of tumor cells to grow and spread. Drugs used in chemotherapy, such as methotrexate and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Ponatinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving blinatumomab, methotrexate, cytarabine, and ponatinib may work better in treating patients with acute lymphoblastic leukemia.

ACTIVE_NOT_RECRUITING
Low-Intensity Chemotherapy, Ponatinib and Blinatumomab in Treating Patients with Philadelphia Chromosome-Positive And/or BCR-ABL Positive Acute Lymphoblastic Leukemia
Description

This phase II trial studies how well low-intensity chemotherapy and ponatinib work in treating patients with Philadelphia chromosome-positive and/or BCR-ABL positive acute lymphoblastic leukemia that may have come back or is not responding to treatment. Drugs used in chemotherapy, such as cyclophosphamide, vincristine, dexamethasone, methotrexate, and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Immunotherapy with rituximab and blinatumomab, may induce changes in body's immune system and may interfere with the ability of cancer cells to grow and spread. Ponatinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Granulocyte colony stimulating factor helps the bone marrow make recover after treatment. Giving low-intensity chemotherapy, ponatinib, and blinatumomab may work better in treating patients with acute lymphoblastic leukemia.

COMPLETED
Umbilical Cord Blood Transplant With Added Sugar and Chemotherapy and Radiation Therapy in Treating Patients With Leukemia or Lymphoma
Description

This phase II trial studies how well an umbilical cord blood transplant with added sugar works with chemotherapy and radiation therapy in treating patients with leukemia or lymphoma. Giving chemotherapy and total-body irradiation before a donor umbilical cord blood transplant helps stop the growth of cells in the bone marrow, including normal blood-forming cells (stem cells) and cancer cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. The umbilical cord blood cells will be grown ("expanded") on a special layer of cells collected from the bone marrow of healthy volunteers in a laboratory. A type of sugar will also be added to the cells in the laboratory that may help the transplant to "take" faster.

TERMINATED
Axitinib and Bosutinib in Treating Patients With Chronic, Accelerated, or Blastic Phase Chronic Myeloid Leukemia
Description

This phase I/II trial studies the side effects and best dose of axitinib and bosutinib and how well they work in treating patients with chronic, accelerated, or blastic phase chronic myeloid leukemia. Axitinib and bosutinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.

RECRUITING
Personalized NK Cell Therapy in CBT
Description

This phase II clinical trial studies how well personalized natural killer (NK) cell therapy works after chemotherapy and umbilical cord blood transplant in treating patients with myelodysplastic syndrome, leukemia, lymphoma or multiple myeloma. This clinical trial will test cord blood (CB) selection for human leukocyte antigen (HLA)-C1/x recipients based on HLA-killer-cell immunoglobulin-like receptor (KIR) typing, and adoptive therapy with CB-derived NK cells for HLA-C2/C2 patients. Natural killer cells may kill tumor cells that remain in the body after chemotherapy treatment and lessen the risk of graft versus host disease after cord blood transplant.

ACTIVE_NOT_RECRUITING
Multi-antigen CMV-MVA Triplex Vaccine in Reducing CMV Complications in Patients Previously Infected With CMV and Undergoing Donor Hematopoietic Cell Transplant
Description

This randomized phase II trial studies the safety and how well multi-peptide cytomegalovirus (CMV)-modified vaccinia Ankara (MVA) vaccine works in reducing CMV complications in patients previously infected with CMV and are undergoing a donor hematopoietic cell transplant. CMV is a virus that may reproduce and cause disease and even death in patients with lowered immune systems, such as those undergoing a hematopoietic cell transplant. By placing 3 small pieces of CMV deoxyribonucleic acid (DNA) (the chemical form of genes) into a very safe, weakened virus called MVA, the multi-peptide CMV-MVA vaccine may be able to induce immunity (the ability to recognize and respond to an infection) to CMV. This may help to reduce both CMV complications and reduce the need for antiviral drugs in patients undergoing a donor hematopoietic cell transplant.

COMPLETED
Vaccine Therapy in Reducing the Frequency of Cytomegalovirus Events in Patients With Hematologic Malignancies Undergoing Donor Stem Cell Transplant
Description

This randomized phase II trial studies how well vaccine therapy works in reducing the frequency of cytomegalovirus severe infections (events) in patients with hematologic malignancies undergoing donor stem cell transplant. Vaccines made from a peptide may help the body build an effective immune response and may reduce cytomegalovirus events after donor stem cell transplant.

COMPLETED
Selective Depletion of CD45RA+ T Cells From Allogeneic Peripheral Blood Stem Cell Grafts From HLA-Matched Related and Unrelated Donors in Preventing GVHD
Description

This phase II trial is for patients with acute lymphocytic leukemia, acute myeloid leukemia, myelodysplastic syndrome or chronic myeloid leukemia who have been referred for a peripheral blood stem cell transplantation to treat their cancer. In these transplants, chemotherapy and total-body radiotherapy ('conditioning') are used to kill residual leukemia cells and the patient's normal blood cells, especially immune cells that could reject the donor cells. Following the chemo/radiotherapy, blood stem cells from the donor are infused. These stem cells will grow and eventually replace the patient's original blood system, including red cells that carry oxygen to our tissues, platelets that stop bleeding from damaged vessels, and multiple types of immune-system white blood cells that fight infections. Mature donor immune cells, especially a type of immune cell called T lymphocytes (or T cells) are transferred along with these blood-forming stem cells. T cells are a major part of the curative power of transplantation because they can attack leukemia cells that have survived the chemo/radiation therapy and also help to fight infections after transplantation. However, donor T cells can also attack a patient's healthy tissues in an often-dangerous condition known as Graft-Versus-Host-Disease (GVHD). Drugs that suppress immune cells are used to decrease the severity of GVHD; however, they are incompletely effective and prolonged immunosuppression used to prevent and treat GVHD significantly increases the risk of serious infections. Removing all donor T cells from the transplant graft can prevent GVHD, but doing so also profoundly delays infection-fighting immune reconstitution and eliminates the possibility that donor immune cells will kill residual leukemia cells. Work in animal models found that depleting a type of T cell, called naïve T cells or T cells that have never responded to an infection, can diminish GVHD while at least in part preserving some of the benefits of donor T cells including resistance to infection and the ability to kill leukemia cells. This clinical trial studies how well the selective removal of naïve T cells works in preventing GVHD after peripheral blood stem cell transplants. This study will include patients conditioned with high or medium intensity chemo/radiotherapy who can receive donor grafts from related or unrelated donors.

COMPLETED
Natural Killer Cells Before and After Donor Stem Cell Transplant in Treating Patients With Acute Myeloid Leukemia, Myelodysplastic Syndrome, or Chronic Myelogenous Leukemia
Description

This phase I/II studies the side effects and best dose of natural killer cells before and after donor stem cell transplant and to see how well they work in treating patients with acute myeloid leukemia, myelodysplastic syndrome, or chronic myelogenous leukemia. Giving chemotherapy with or without total body irradiation before a donor peripheral blood stem cell or bone marrow transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells and natural killer cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets.

COMPLETED
Selective Depletion of CD45RA+ T Cells From Allogeneic Peripheral Blood Stem Cell Grafts in Preventing GVHD in Children
Description

This phase II trial studies how well T cell depleted donor peripheral blood stem cell transplant works in preventing graft-versus-host disease in younger patients with high risk hematologic malignancies. Giving chemotherapy and total-body irradiation before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Removing a subset of the T cells from the donor cells before transplant may stop this from happening.

COMPLETED
Donor T Cells After Donor Stem Cell Transplant in Treating Patients With Hematologic Malignancies
Description

This pilot phase II trial studies how well giving donor T cells after donor stem cell transplant works in treating patients with hematologic malignancies. In a donor stem cell transplant, the donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Giving an infusion of the donor's T cells (donor lymphocyte infusion) after the transplant may help increase this effect.

Conditions
Accelerated Phase Chronic Myelogenous LeukemiaAdult Acute Myeloid Leukemia With 11q23 (MLL) AbnormalitiesAdult Acute Myeloid Leukemia With Del(5q)Adult Acute Myeloid Leukemia With Inv(16)(p13;q22)Adult Acute Myeloid Leukemia With t(15;17)(q22;q12)Adult Acute Myeloid Leukemia With t(16;16)(p13;q22)Adult Acute Myeloid Leukemia With t(8;21)(q22;q22)Adult Nasal Type Extranodal NK/T-cell LymphomaAnaplastic Large Cell LymphomaAngioimmunoblastic T-cell LymphomaBlastic Phase Chronic Myelogenous LeukemiaChildhood Burkitt LymphomaChildhood Chronic Myelogenous LeukemiaChildhood Diffuse Large Cell LymphomaChildhood Immunoblastic Large Cell LymphomaChildhood Myelodysplastic SyndromesChildhood Nasal Type Extranodal NK/T-cell LymphomaChronic Phase Chronic Myelogenous LeukemiaCutaneous B-cell Non-Hodgkin Lymphomade Novo Myelodysplastic SyndromesExtranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid TissueHepatosplenic T-cell LymphomaIntraocular LymphomaNodal Marginal Zone B-cell LymphomaNoncutaneous Extranodal LymphomaPeripheral T-cell LymphomaPost-transplant Lymphoproliferative DisorderPreviously Treated Myelodysplastic SyndromesRecurrent Adult Acute Lymphoblastic LeukemiaRecurrent Adult Acute Myeloid LeukemiaRecurrent Adult Burkitt LymphomaRecurrent Adult Diffuse Large Cell LymphomaRecurrent Adult Diffuse Mixed Cell LymphomaRecurrent Adult Diffuse Small Cleaved Cell LymphomaRecurrent Adult Grade III Lymphomatoid GranulomatosisRecurrent Adult Hodgkin LymphomaRecurrent Adult Immunoblastic Large Cell LymphomaRecurrent Adult Lymphoblastic LymphomaRecurrent Adult T-cell Leukemia/LymphomaRecurrent Childhood Acute Lymphoblastic LeukemiaRecurrent Childhood Acute Myeloid LeukemiaRecurrent Childhood Anaplastic Large Cell LymphomaRecurrent Childhood Grade III Lymphomatoid GranulomatosisRecurrent Childhood Large Cell LymphomaRecurrent Childhood Lymphoblastic LymphomaRecurrent Childhood Small Noncleaved Cell LymphomaRecurrent Cutaneous T-cell Non-Hodgkin LymphomaRecurrent Grade 1 Follicular LymphomaRecurrent Grade 2 Follicular LymphomaRecurrent Grade 3 Follicular LymphomaRecurrent Mantle Cell LymphomaRecurrent Marginal Zone LymphomaRecurrent Mycosis Fungoides/Sezary SyndromeRecurrent Small Lymphocytic LymphomaRecurrent/Refractory Childhood Hodgkin LymphomaRefractory Chronic Lymphocytic LeukemiaRefractory Hairy Cell LeukemiaRelapsing Chronic Myelogenous LeukemiaSecondary Myelodysplastic SyndromesSmall Intestine LymphomaSplenic Marginal Zone LymphomaT-cell Large Granular Lymphocyte LeukemiaTesticular LymphomaWaldenström Macroglobulinemia
COMPLETED
Donor Natural Killer Cells and Donor Stem Cell Transplant in Treating Patients With High Risk Myeloid Malignancies
Description

This phase I/II trial studies the side effects and best dose of donor natural killer cells when given together with donor stem cell transplant and to see how well they work in treating patients with myeloid malignancies that are likely to come back or spread. Giving chemotherapy, such as busulfan and fludarabine phosphate, before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells and natural killer cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets.

COMPLETED
Vorinostat, Tacrolimus, and Methotrexate in Preventing GVHD After Stem Cell Transplant in Patients With Hematological Malignancies
Description

This pilot phase II trial studies how well giving vorinostat, tacrolimus, and methotrexate works in preventing graft-versus-host disease (GVHD) after stem cell transplant in patients with hematological malignancies. Vorinostat, tacrolimus, and methotrexate may be an effective treatment for GVHD caused by a bone marrow transplant.

Conditions
Accelerated Phase Chronic Myelogenous LeukemiaAdult Acute Myeloid Leukemia in RemissionAdult Acute Myeloid Leukemia With 11q23 (MLL) AbnormalitiesAdult Acute Myeloid Leukemia With Del(5q)Adult Acute Myeloid Leukemia With Inv(16)(p13;q22)Adult Acute Myeloid Leukemia With t(15;17)(q22;q12)Adult Acute Myeloid Leukemia With t(16;16)(p13;q22)Adult Acute Myeloid Leukemia With t(8;21)(q22;q22)Adult Grade III Lymphomatoid GranulomatosisB-cell Chronic Lymphocytic LeukemiaChronic Myelogenous Leukemia, BCR-ABL1 PositiveChronic Myelomonocytic LeukemiaChronic Phase Chronic Myelogenous LeukemiaContiguous Stage II Adult Burkitt LymphomaContiguous Stage II Adult Diffuse Large Cell LymphomaContiguous Stage II Adult Diffuse Mixed Cell LymphomaContiguous Stage II Adult Diffuse Small Cleaved Cell LymphomaContiguous Stage II Adult Immunoblastic Large Cell LymphomaContiguous Stage II Adult Lymphoblastic LymphomaContiguous Stage II Grade 1 Follicular LymphomaContiguous Stage II Grade 2 Follicular LymphomaContiguous Stage II Grade 3 Follicular LymphomaContiguous Stage II Mantle Cell LymphomaContiguous Stage II Marginal Zone LymphomaContiguous Stage II Small Lymphocytic LymphomaCutaneous B-cell Non-Hodgkin LymphomaExtranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid TissueGraft Versus Host DiseaseIntraocular LymphomaMyelodysplastic Syndrome With Isolated Del(5q)Myelodysplastic/Myeloproliferative Neoplasm, UnclassifiableNodal Marginal Zone B-cell LymphomaNoncontiguous Stage II Adult Burkitt LymphomaNoncontiguous Stage II Adult Diffuse Large Cell LymphomaNoncontiguous Stage II Adult Diffuse Mixed Cell LymphomaNoncontiguous Stage II Adult Diffuse Small Cleaved Cell LymphomaNoncontiguous Stage II Adult Immunoblastic Large Cell LymphomaNoncontiguous Stage II Adult Lymphoblastic LymphomaNoncontiguous Stage II Grade 1 Follicular LymphomaNoncontiguous Stage II Grade 2 Follicular LymphomaNoncontiguous Stage II Grade 3 Follicular LymphomaNoncontiguous Stage II Mantle Cell LymphomaNoncontiguous Stage II Marginal Zone LymphomaNoncontiguous Stage II Small Lymphocytic LymphomaPost-transplant Lymphoproliferative DisorderPrimary Central Nervous System Hodgkin LymphomaPrimary Central Nervous System Non-Hodgkin LymphomaRecurrent Adult Acute Myeloid LeukemiaRecurrent Adult Burkitt LymphomaRecurrent Adult Diffuse Large Cell LymphomaRecurrent Adult Diffuse Mixed Cell LymphomaRecurrent Adult Diffuse Small Cleaved Cell LymphomaRecurrent Adult Grade III Lymphomatoid GranulomatosisRecurrent Adult Hodgkin LymphomaRecurrent Adult Immunoblastic Large Cell LymphomaRecurrent Adult Lymphoblastic LymphomaRecurrent Grade 1 Follicular LymphomaRecurrent Grade 2 Follicular LymphomaRecurrent Grade 3 Follicular LymphomaRecurrent Mantle Cell LymphomaRecurrent Marginal Zone LymphomaRecurrent Small Lymphocytic LymphomaRefractory AnemiaRefractory Anemia With Excess BlastsRefractory Anemia With Ringed SideroblastsRefractory Chronic Lymphocytic LeukemiaRefractory Cytopenia With Multilineage DysplasiaRefractory Hairy Cell LeukemiaRelapsing Chronic Myelogenous LeukemiaSecondary Central Nervous System Hodgkin LymphomaSecondary Central Nervous System Non-Hodgkin LymphomaSmall Intestine LymphomaSplenic Marginal Zone LymphomaStage I Adult Burkitt LymphomaStage I Adult Diffuse Large Cell LymphomaStage I Adult Diffuse Mixed Cell LymphomaStage I Adult Diffuse Small Cleaved Cell LymphomaStage I Adult Hodgkin LymphomaStage I Adult Immunoblastic Large Cell LymphomaStage I Adult Lymphoblastic LymphomaStage I Chronic Lymphocytic LeukemiaStage I Grade 1 Follicular LymphomaStage I Grade 2 Follicular LymphomaStage I Grade 3 Follicular LymphomaStage I Mantle Cell LymphomaStage I Marginal Zone LymphomaStage I Small Lymphocytic LymphomaStage II Adult Hodgkin LymphomaStage II Chronic Lymphocytic LeukemiaStage III Adult Burkitt LymphomaStage III Adult Diffuse Large Cell LymphomaStage III Adult Diffuse Mixed Cell LymphomaStage III Adult Diffuse Small Cleaved Cell LymphomaStage III Adult Hodgkin LymphomaStage III Adult Immunoblastic Large Cell LymphomaStage III Adult Lymphoblastic LymphomaStage III Chronic Lymphocytic LeukemiaStage III Grade 1 Follicular LymphomaStage III Grade 2 Follicular LymphomaStage III Grade 3 Follicular LymphomaStage III Mantle Cell LymphomaStage III Marginal Zone LymphomaStage IV Adult Burkitt LymphomaStage IV Adult Diffuse Large Cell LymphomaStage IV Adult Diffuse Mixed Cell LymphomaStage IV Adult Diffuse Small Cleaved Cell LymphomaStage IV Adult Hodgkin LymphomaStage IV Adult Immunoblastic Large Cell LymphomaStage IV Adult Lymphoblastic LymphomaStage IV Chronic Lymphocytic LeukemiaStage IV Grade 1 Follicular LymphomaStage IV Grade 2 Follicular LymphomaStage IV Grade 3 Follicular LymphomaStage IV Mantle Cell LymphomaStage IV Marginal Zone LymphomaStage IV Small Lymphocytic LymphomaTesticular LymphomaWaldenström Macroglobulinemia
WITHDRAWN
Single or Double Donor Umbilical Cord Blood Transplant in Treating Patients With High-Risk Hematologic Malignancies
Description

This study will determine the safety and applicability of experimental forms of umbilical cord blood (UCB) transplantation for patients with high risk hematologic malignancies who might benefit from a hematopoietic stem cell transplant (HSCT) but who do not have a standard donor option (no available HLA-matched related donor (MRD), HLA-matched unrelated donor (MUD)), or single UCB unit with adequate cell number and HLA-match).

Conditions
Accelerated Phase Chronic Myelogenous LeukemiaAcute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic SyndromeAdult Acute Lymphoblastic Leukemia in RemissionAdult Acute Myeloid Leukemia in RemissionAdult Acute Myeloid Leukemia With 11q23 (MLL) AbnormalitiesAdult Acute Myeloid Leukemia With Inv(16)(p13;q22)Adult Acute Myeloid Leukemia With t(15;17)(q22;q12)Adult Acute Myeloid Leukemia With t(16;16)(p13;q22)Adult Acute Myeloid Leukemia With t(8;21)(q22;q22)Adult Nasal Type Extranodal NK/T-cell LymphomaAnaplastic Large Cell LymphomaAngioimmunoblastic T-cell LymphomaBlastic Phase Chronic Myelogenous LeukemiaCutaneous B-cell Non-Hodgkin Lymphomade Novo Myelodysplastic SyndromesExtranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid TissueHepatosplenic T-cell LymphomaIntraocular LymphomaMyelodysplastic/Myeloproliferative Neoplasm, UnclassifiableNodal Marginal Zone B-cell LymphomaNoncutaneous Extranodal LymphomaPeripheral T-cell LymphomaPost-transplant Lymphoproliferative DisorderPreviously Treated Myelodysplastic SyndromesRecurrent Adult Acute Lymphoblastic LeukemiaRecurrent Adult Acute Myeloid LeukemiaRecurrent Adult Burkitt LymphomaRecurrent Adult Diffuse Large Cell LymphomaRecurrent Adult Diffuse Mixed Cell LymphomaRecurrent Adult Diffuse Small Cleaved Cell LymphomaRecurrent Adult Grade III Lymphomatoid GranulomatosisRecurrent Adult Hodgkin LymphomaRecurrent Adult Immunoblastic Large Cell LymphomaRecurrent Adult Lymphoblastic LymphomaRecurrent Adult T-cell Leukemia/LymphomaRecurrent Cutaneous T-cell Non-Hodgkin LymphomaRecurrent Grade 1 Follicular LymphomaRecurrent Grade 2 Follicular LymphomaRecurrent Grade 3 Follicular LymphomaRecurrent Mantle Cell LymphomaRecurrent Marginal Zone LymphomaRecurrent Mycosis Fungoides/Sezary SyndromeRecurrent Small Lymphocytic LymphomaRefractory Chronic Lymphocytic LeukemiaRefractory Hairy Cell LeukemiaRefractory Multiple MyelomaRelapsing Chronic Myelogenous LeukemiaSecondary Acute Myeloid LeukemiaSecondary Myelodysplastic SyndromesSmall Intestine LymphomaSplenic Marginal Zone LymphomaT-cell Large Granular Lymphocyte LeukemiaTesticular LymphomaWaldenström Macroglobulinemia
UNKNOWN
NK Cells in Cord Blood Transplantation
Description

This phase I trial studies the side effects and best way to give natural killer cells and donor umbilical cord blood transplant in treating patients with hematological malignancies. Giving chemotherapy with or without total body irradiation before a donor umbilical cord blood transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells and natural killer cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets.

COMPLETED
Vaccine Therapy in Preventing Cytomegalovirus Infection in Patients With Hematological Malignancies Undergoing Donor Stem Cell Transplant
Description

This randomized phase I trial studies the side effects of vaccine therapy in preventing cytomegalovirus (CMV) infection in patients with hematological malignancies undergoing donor stem cell transplant. Vaccines made from a tetanus-CMV peptide or antigen may help the body build an effective immune response and prevent or delay the recurrence of CMV infection in patients undergoing donor stem cell transplant for hematological malignancies.

Conditions
Accelerated Phase Chronic Myelogenous LeukemiaAdult Acute Lymphoblastic Leukemia in RemissionAdult Acute Myeloid Leukemia in RemissionAdult Acute Myeloid Leukemia With 11q23 (MLL) AbnormalitiesAdult Acute Myeloid Leukemia With Del(5q)Adult Acute Myeloid Leukemia With Inv(16)(p13;q22)Adult Acute Myeloid Leukemia With t(15;17)(q22;q12)Adult Acute Myeloid Leukemia With t(16;16)(p13;q22)Adult Acute Myeloid Leukemia With t(8;21)(q22;q22)Adult Acute Promyelocytic Leukemia (M3)Adult Nasal Type Extranodal NK/T-cell LymphomaAdult Nodular Lymphocyte Predominant Hodgkin LymphomaAnaplastic Large Cell LymphomaB-cell Adult Acute Lymphoblastic LeukemiaChronic Eosinophilic LeukemiaChronic Myelomonocytic LeukemiaChronic Phase Chronic Myelogenous LeukemiaContiguous Stage II Adult Burkitt LymphomaContiguous Stage II Adult Diffuse Large Cell LymphomaContiguous Stage II Adult Lymphoblastic LymphomaContiguous Stage II Grade 1 Follicular LymphomaContiguous Stage II Grade 2 Follicular LymphomaContiguous Stage II Grade 3 Follicular LymphomaContiguous Stage II Mantle Cell LymphomaContiguous Stage II Small Lymphocytic LymphomaCytomegalovirus Infectionde Novo Myelodysplastic SyndromesEssential ThrombocythemiaExtramedullary PlasmacytomaExtranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid TissueIsolated Plasmacytoma of BoneMonoclonal Gammopathy of Undetermined SignificanceNodal Marginal Zone B-cell LymphomaNoncontiguous Stage II Adult Burkitt LymphomaNoncontiguous Stage II Adult Diffuse Large Cell LymphomaNoncontiguous Stage II Adult Lymphoblastic LymphomaNoncontiguous Stage II Grade 1 Follicular LymphomaNoncontiguous Stage II Grade 2 Follicular LymphomaNoncontiguous Stage II Grade 3 Follicular LymphomaNoncontiguous Stage II Mantle Cell LymphomaNoncontiguous Stage II Small Lymphocytic LymphomaPeripheral T-cell LymphomaPolycythemia VeraPost-transplant Lymphoproliferative DisorderPreviously Treated Myelodysplastic SyndromesPrimary Central Nervous System Hodgkin LymphomaPrimary Central Nervous System Non-Hodgkin LymphomaPrimary MyelofibrosisProgressive Hairy Cell Leukemia, Initial TreatmentProlymphocytic LeukemiaRecurrent Adult Acute Lymphoblastic LeukemiaRecurrent Adult Acute Myeloid LeukemiaRecurrent Adult Burkitt LymphomaRecurrent Adult Diffuse Large Cell LymphomaRecurrent Adult Hodgkin LymphomaRecurrent Adult Lymphoblastic LymphomaRecurrent Adult T-cell Leukemia/LymphomaRecurrent Cutaneous T-cell Non-Hodgkin LymphomaRecurrent Grade 1 Follicular LymphomaRecurrent Grade 2 Follicular LymphomaRecurrent Grade 3 Follicular LymphomaRecurrent Mantle Cell LymphomaRecurrent Mycosis Fungoides/Sezary SyndromeRecurrent Small Lymphocytic LymphomaRefractory Chronic Lymphocytic LeukemiaRefractory Hairy Cell LeukemiaRefractory Multiple MyelomaRelapsing Chronic Myelogenous LeukemiaSecondary Acute Myeloid LeukemiaSecondary Myelodysplastic SyndromesStage I Adult Burkitt LymphomaStage I Adult Diffuse Large Cell LymphomaStage I Adult Hodgkin LymphomaStage I Adult Lymphoblastic LymphomaStage I Adult T-cell Leukemia/LymphomaStage I Chronic Lymphocytic LeukemiaStage I Cutaneous T-cell Non-Hodgkin LymphomaStage I Grade 1 Follicular LymphomaStage I Grade 2 Follicular LymphomaStage I Grade 3 Follicular LymphomaStage I Mantle Cell LymphomaStage I Multiple MyelomaStage I Small Lymphocytic LymphomaStage IA Mycosis Fungoides/Sezary SyndromeStage IB Mycosis Fungoides/Sezary SyndromeStage II Adult Hodgkin LymphomaStage II Adult T-cell Leukemia/LymphomaStage II Chronic Lymphocytic LeukemiaStage II Cutaneous T-cell Non-Hodgkin LymphomaStage II Multiple MyelomaStage IIA Mycosis Fungoides/Sezary SyndromeStage IIB Mycosis Fungoides/Sezary SyndromeStage III Adult Burkitt LymphomaStage III Adult Diffuse Large Cell LymphomaStage III Adult Hodgkin LymphomaStage III Adult Lymphoblastic LymphomaStage III Adult T-cell Leukemia/LymphomaStage III Chronic Lymphocytic LeukemiaStage III Cutaneous T-cell Non-Hodgkin LymphomaStage III Grade 1 Follicular LymphomaStage III Grade 2 Follicular LymphomaStage III Grade 3 Follicular LymphomaStage III Mantle Cell LymphomaStage III Multiple MyelomaStage III Small Lymphocytic LymphomaStage IIIA Mycosis Fungoides/Sezary SyndromeStage IIIB Mycosis Fungoides/Sezary SyndromeStage IV Adult Burkitt LymphomaStage IV Adult Diffuse Large Cell LymphomaStage IV Adult Hodgkin LymphomaStage IV Adult Lymphoblastic LymphomaStage IV Adult T-cell Leukemia/LymphomaStage IV Chronic Lymphocytic LeukemiaStage IV Cutaneous T-cell Non-Hodgkin LymphomaStage IV Grade 1 Follicular LymphomaStage IV Grade 2 Follicular LymphomaStage IV Grade 3 Follicular LymphomaStage IV Mantle Cell LymphomaStage IV Small Lymphocytic LymphomaStage IVA Mycosis Fungoides/Sezary SyndromeStage IVB Mycosis Fungoides/Sezary SyndromeT-cell Adult Acute Lymphoblastic LeukemiaT-cell Large Granular Lymphocyte LeukemiaUntreated Adult Acute Myeloid LeukemiaUntreated Hairy Cell LeukemiaWaldenström Macroglobulinemia
COMPLETED
Fludarabine Phosphate, Melphalan, and Low-Dose Total-Body Irradiation Followed by Donor Peripheral Blood Stem Cell Transplant in Treating Patients With Hematologic Malignancies
Description

This phase II trial studies how well giving fludarabine phosphate, melphalan, and low-dose total-body irradiation (TBI) followed by donor peripheral blood stem cell transplant (PBSCT) works in treating patients with hematologic malignancies. Giving chemotherapy drugs such as fludarabine phosphate and melphalan, and low-dose TBI before a donor PBSCT helps stop the growth of cancer and abnormal cells and helps stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from the donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cell from a donor can make an immune response against the body's normal cells. Giving tacrolimus, mycophenolate mofetil (MMF), and methotrexate after transplant may stop this from happening

Conditions
Accelerated Phase Chronic Myelogenous LeukemiaAdult Acute Lymphoblastic Leukemia in RemissionAdult Acute Myeloid Leukemia in RemissionAdult Acute Myeloid Leukemia With 11q23 (MLL) AbnormalitiesAdult Acute Myeloid Leukemia With Del(5q)Adult Acute Myeloid Leukemia With Inv(16)(p13;q22)Adult Acute Myeloid Leukemia With t(15;17)(q22;q12)Adult Acute Myeloid Leukemia With t(16;16)(p13;q22)Adult Acute Myeloid Leukemia With t(8;21)(q22;q22)Adult Grade III Lymphomatoid GranulomatosisAdult Nasal Type Extranodal NK/T-cell LymphomaAnaplastic Large Cell LymphomaAngioimmunoblastic T-cell LymphomaAplastic AnemiaBurkitt LymphomaChildhood Acute Lymphoblastic Leukemia in RemissionChildhood Acute Myeloid Leukemia in RemissionChildhood Chronic Myelogenous LeukemiaChildhood Diffuse Large Cell LymphomaChildhood Grade III Lymphomatoid GranulomatosisChildhood Immunoblastic Large Cell LymphomaChildhood Myelodysplastic SyndromesChildhood Nasal Type Extranodal NK/T-cell LymphomaChronic Myelomonocytic LeukemiaChronic Phase Chronic Myelogenous LeukemiaCongenital Amegakaryocytic ThrombocytopeniaDiamond-Blackfan AnemiaExtranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid TissueHepatosplenic T-cell LymphomaJuvenile Myelomonocytic LeukemiaMyelodysplastic/Myeloproliferative Neoplasm, UnclassifiableNodal Marginal Zone B-cell LymphomaParoxysmal Nocturnal HemoglobinuriaPeripheral T-cell LymphomaPolycythemia VeraPost-transplant Lymphoproliferative DisorderPreviously Treated Myelodysplastic SyndromesPrimary MyelofibrosisRecurrent Adult Acute Lymphoblastic LeukemiaRecurrent Adult Acute Myeloid LeukemiaRecurrent Adult Burkitt LymphomaRecurrent Adult Diffuse Large Cell LymphomaRecurrent Adult Diffuse Mixed Cell LymphomaRecurrent Adult Diffuse Small Cleaved Cell LymphomaRecurrent Adult Grade III Lymphomatoid GranulomatosisRecurrent Adult Hodgkin LymphomaRecurrent Adult Immunoblastic Large Cell LymphomaRecurrent Adult Lymphoblastic LymphomaRecurrent Adult T-cell Leukemia/LymphomaRecurrent Childhood Acute Lymphoblastic LeukemiaRecurrent Childhood Acute Myeloid LeukemiaRecurrent Childhood Anaplastic Large Cell LymphomaRecurrent Childhood Grade III Lymphomatoid GranulomatosisRecurrent Childhood Large Cell LymphomaRecurrent Childhood Lymphoblastic LymphomaRecurrent Childhood Small Noncleaved Cell LymphomaRecurrent Cutaneous T-cell Non-Hodgkin LymphomaRecurrent Grade 1 Follicular LymphomaRecurrent Grade 2 Follicular LymphomaRecurrent Grade 3 Follicular LymphomaRecurrent Mantle Cell LymphomaRecurrent Marginal Zone LymphomaRecurrent Mycosis Fungoides/Sezary SyndromeRecurrent Small Lymphocytic LymphomaRecurrent/Refractory Childhood Hodgkin LymphomaRefractory Chronic Lymphocytic LeukemiaRefractory Hairy Cell LeukemiaRefractory Multiple MyelomaSecondary Acute Myeloid LeukemiaSecondary Myelodysplastic SyndromesSecondary MyelofibrosisSevere Combined ImmunodeficiencySevere Congenital NeutropeniaShwachman-Diamond SyndromeSplenic Marginal Zone LymphomaT-cell Large Granular Lymphocyte LeukemiaWaldenstrom MacroglobulinemiaWiskott-Aldrich Syndrome
COMPLETED
Eltrombopag Olamine in Treating Thrombocytopenia in Patients With Chronic Myeloid Leukemia or Myelofibrosis Receiving Tyrosine Kinase Therapy
Description

This phase II/III trial studies how well eltrombopag olamine works in treating thrombocytopenia in patients with chronic myeloid leukemia or myelofibrosis receiving tyrosine kinase inhibitor therapy. Eltrombopag olamine may cause the body to make platelets after receiving treatment for chronic myeloid leukemia or myelofibrosis.

COMPLETED
Cyclophosphamide for Prevention of Graft-Versus-Host Disease After Allogeneic Peripheral Blood Stem Cell Transplantation in Patients With Hematological Malignancies
Description

This phase II trial studies how well cyclophosphamide works in preventing chronic graft-versus-host disease after allogeneic peripheral blood stem cell transplant in patients with hematological malignancies. Giving chemotherapy and total-body irradiation before transplantation helps stop the growth of cancer cells and prevents the patient's immune system from rejecting the donor's stem cells. Healthy stem cells from a donor that are infused into the patient help the patient's bone marrow make blood cells; red blood cells, white blood cells, and platelets. Sometimes, however, the transplanted donor cells can cause an immune response against the body's normal cells, which is called graft-versus-host disease (GVHD). Giving cyclophosphamide after transplant may prevent this from happening or may make chronic GVHD less severe.

Conditions
Accelerated Phase Chronic Myelogenous LeukemiaAdult Acute Lymphoblastic Leukemia in RemissionAdult Acute Megakaryoblastic Leukemia (M7)Adult Acute Myeloid Leukemia in RemissionAdult Erythroleukemia (M6a)Adult Nasal Type Extranodal NK/T-cell LymphomaAdult Pure Erythroid Leukemia (M6b)Anaplastic Large Cell LymphomaAngioimmunoblastic T-cell LymphomaBlastic Phase Chronic Myelogenous LeukemiaChildhood Acute Erythroleukemia (M6)Childhood Acute Lymphoblastic Leukemia in RemissionChildhood Acute Megakaryocytic Leukemia (M7)Childhood Acute Myeloid Leukemia in RemissionChildhood Burkitt LymphomaChildhood Chronic Myelogenous LeukemiaChildhood Diffuse Large Cell LymphomaChildhood Immunoblastic Large Cell LymphomaChildhood Myelodysplastic SyndromesChildhood Nasal Type Extranodal NK/T-cell LymphomaChronic Myelomonocytic LeukemiaChronic Phase Chronic Myelogenous LeukemiaCutaneous B-cell Non-Hodgkin Lymphomade Novo Myelodysplastic SyndromesExtranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid TissueHepatosplenic T-cell LymphomaIntraocular LymphomaNodal Marginal Zone B-cell LymphomaNoncutaneous Extranodal LymphomaPeripheral T-cell LymphomaPhiladelphia Chromosome Negative Chronic Myelogenous LeukemiaPost-transplant Lymphoproliferative DisorderPreviously Treated Myelodysplastic SyndromesRecurrent Adult Acute Lymphoblastic LeukemiaRecurrent Adult Acute Myeloid LeukemiaRecurrent Adult Burkitt LymphomaRecurrent Adult Diffuse Large Cell LymphomaRecurrent Adult Diffuse Mixed Cell LymphomaRecurrent Adult Diffuse Small Cleaved Cell LymphomaRecurrent Adult Grade III Lymphomatoid GranulomatosisRecurrent Adult Hodgkin LymphomaRecurrent Adult Immunoblastic Large Cell LymphomaRecurrent Adult Lymphoblastic LymphomaRecurrent Adult T-cell Leukemia/LymphomaRecurrent Childhood Acute Lymphoblastic LeukemiaRecurrent Childhood Acute Myeloid LeukemiaRecurrent Childhood Anaplastic Large Cell LymphomaRecurrent Childhood Grade III Lymphomatoid GranulomatosisRecurrent Childhood Large Cell LymphomaRecurrent Childhood Lymphoblastic LymphomaRecurrent Childhood Small Noncleaved Cell LymphomaRecurrent Cutaneous T-cell Non-Hodgkin LymphomaRecurrent Grade 1 Follicular LymphomaRecurrent Grade 2 Follicular LymphomaRecurrent Grade 3 Follicular LymphomaRecurrent Mantle Cell LymphomaRecurrent Marginal Zone LymphomaRecurrent Mycosis Fungoides/Sezary SyndromeRecurrent Small Lymphocytic LymphomaRecurrent/Refractory Childhood Hodgkin LymphomaRelapsing Chronic Myelogenous LeukemiaSecondary Acute Myeloid LeukemiaSecondary Myelodysplastic SyndromesSmall Intestine LymphomaSplenic Marginal Zone LymphomaStage III Multiple MyelomaTesticular LymphomaWaldenström Macroglobulinemia
TERMINATED
Dasatinib and Cyclosporine in Treating Patients With Chronic Myelogenous Leukemia Refractory or Intolerant to Imatinib Mesylate
Description

This phase I trial studies the side effects and the best way to give dasatinib and cyclosporine in treating patients with chronic myelogenous leukemia (CML) refractory or intolerant to imatinib mesylate. Dasatinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Cyclosporine may help dasatinib work better by making cancer cells more sensitive to the drug. Giving dasatinib together with cyclosporine may be an effective treatment for CML.

ACTIVE_NOT_RECRUITING
Combination Chemotherapy and Ponatinib Hydrochloride in Treating Patients With Acute Lymphoblastic Leukemia
Description

This phase II trial studies the side effects and how well combination chemotherapy and ponatinib hydrochloride work in treating patients with acute lymphoblastic leukemia. Drugs used in chemotherapy, such as cyclophosphamide, vincristine sulfate, doxorubicin hydrochloride, and dexamethasone, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Ponatinib hydrochloride may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving combination chemotherapy and ponatinib hydrochloride may be an effective treatment for acute lymphoblastic leukemia.

COMPLETED
Palifermin in Preventing Chronic Graft-Versus-Host Disease in Patients Who Have Undergone Donor Stem Cell Transplant for Hematologic Cancer
Description

RATIONALE: Growth factors, such as palifermin, may prevent chronic graft-versus-host disease caused by donor stem cell transplant. PURPOSE: This randomized clinical trial studies palifermin in preventing chronic graft-versus-host disease in patients who have undergone donor stem cell transplant for hematologic cancer

Conditions
Accelerated Phase Chronic Myelogenous LeukemiaAdult Acute Lymphoblastic Leukemia in RemissionAdult Acute Myeloid Leukemia in RemissionAdult Acute Myeloid Leukemia With 11q23 (MLL) AbnormalitiesAdult Acute Myeloid Leukemia With Del(5q)Adult Acute Myeloid Leukemia With Inv(16)(p13;q22)Adult Acute Myeloid Leukemia With t(15;17)(q22;q12)Adult Acute Myeloid Leukemia With t(16;16)(p13;q22)Adult Acute Myeloid Leukemia With t(8;21)(q22;q22)Atypical Chronic Myeloid Leukemia, BCR-ABL1 NegativeBlastic Phase Chronic Myelogenous LeukemiaChronic Eosinophilic LeukemiaChronic Myelomonocytic LeukemiaChronic Neutrophilic LeukemiaChronic Phase Chronic Myelogenous Leukemiade Novo Myelodysplastic SyndromesExtranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid TissueGraft Versus Host DiseaseMyelodysplastic/Myeloproliferative Neoplasm, UnclassifiableNodal Marginal Zone B-cell LymphomaNoncontiguous Stage II Adult Burkitt LymphomaNoncontiguous Stage II Adult Diffuse Large Cell LymphomaNoncontiguous Stage II Adult Diffuse Mixed Cell LymphomaNoncontiguous Stage II Adult Diffuse Small Cleaved Cell LymphomaNoncontiguous Stage II Adult Immunoblastic Large Cell LymphomaNoncontiguous Stage II Adult Lymphoblastic LymphomaNoncontiguous Stage II Grade 1 Follicular LymphomaNoncontiguous Stage II Grade 2 Follicular LymphomaNoncontiguous Stage II Grade 3 Follicular LymphomaNoncontiguous Stage II Mantle Cell LymphomaNoncontiguous Stage II Marginal Zone LymphomaNoncontiguous Stage II Small Lymphocytic LymphomaPreviously Treated Myelodysplastic SyndromesPrimary MyelofibrosisRecurrent Adult Acute Lymphoblastic LeukemiaRecurrent Adult Acute Myeloid LeukemiaRecurrent Adult Burkitt LymphomaRecurrent Adult Diffuse Large Cell LymphomaRecurrent Adult Diffuse Mixed Cell LymphomaRecurrent Adult Diffuse Small Cleaved Cell LymphomaRecurrent Adult Hodgkin LymphomaRecurrent Adult Immunoblastic Large Cell LymphomaRecurrent Adult Lymphoblastic LymphomaRecurrent Cutaneous T-cell Non-Hodgkin LymphomaRecurrent Grade 1 Follicular LymphomaRecurrent Grade 2 Follicular LymphomaRecurrent Grade 3 Follicular LymphomaRecurrent Mantle Cell LymphomaRecurrent Marginal Zone LymphomaRecurrent Mycosis Fungoides/Sezary SyndromeRecurrent Small Lymphocytic LymphomaRefractory Chronic Lymphocytic LeukemiaRefractory Hairy Cell LeukemiaRefractory Multiple MyelomaRelapsing Chronic Myelogenous LeukemiaSecondary Acute Myeloid LeukemiaSecondary Myelodysplastic SyndromesSplenic Marginal Zone LymphomaStage I Multiple MyelomaStage II Multiple MyelomaStage III Adult Burkitt LymphomaStage III Adult Diffuse Large Cell LymphomaStage III Adult Diffuse Mixed Cell LymphomaStage III Adult Diffuse Small Cleaved Cell LymphomaStage III Adult Hodgkin LymphomaStage III Adult Immunoblastic Large Cell LymphomaStage III Adult Lymphoblastic LymphomaStage III Chronic Lymphocytic LeukemiaStage III Grade 1 Follicular LymphomaStage III Grade 2 Follicular LymphomaStage III Grade 3 Follicular LymphomaStage III Mantle Cell LymphomaStage III Marginal Zone LymphomaStage III Multiple MyelomaStage III Small Lymphocytic LymphomaStage IV Adult Burkitt LymphomaStage IV Adult Diffuse Large Cell LymphomaStage IV Adult Diffuse Mixed Cell LymphomaStage IV Adult Diffuse Small Cleaved Cell LymphomaStage IV Adult Hodgkin LymphomaStage IV Adult Immunoblastic Large Cell LymphomaStage IV Adult Lymphoblastic LymphomaStage IV Chronic Lymphocytic LeukemiaStage IV Grade 1 Follicular LymphomaStage IV Grade 2 Follicular LymphomaStage IV Grade 3 Follicular LymphomaStage IV Mantle Cell LymphomaStage IV Marginal Zone LymphomaStage IV Small Lymphocytic Lymphoma