Treatment Trials

12 Clinical Trials for Various Conditions

Focus your search

COMPLETED
Reduced Intensity Donor Stem Cell Transplant in Treating Patients With High Risk Acute Lymphocytic Leukemia in Complete Remission
Description

The reason for doing this study is to determine whether a new method of blood stem cell transplant (also known as bone marrow transplant) is able to treat acute lymphocytic leukemia. Blood stem cells are the "seed cells" necessary to make all blood cells. This new method of transplant uses a combination of low dose radiation and chemotherapy that may be less toxic and cause less harm than a conventional transplant. This lower dose transplant is called a "nonmyeloablative transplant". Researchers want to see if using less radiation and less chemotherapy combined with new immune suppressing drugs after the transplant will help a stem cell transplant to work. Researchers hope that this treatment will cure acute lymphocytic leukemia with fewer side effects. Researchers are hoping to see a mixture of recipient and donor blood cells after transplant. This mixture of donor and recipient blood cells is called "mixed chimerism". Researchers hope that donor cells will attack and eliminate the leukemia. This is called the "graft-versus-leukemia" effect. In addition, after the transplant, white blood cells from the donor may be given to enhance or "boost" the graft-versus-leukemia effect, and hopefully remove all remaining cancer cells. This study is being done because at the present time blood stem cell transplantation (or bone marrow transplantation) is the only known curative therapy for acute lymphocytic leukemia. Because of age or underlying health status acute lymphocytic leukemia patients have a higher likelihood of experiencing severe harm from a conventional blood stem cell transplant. Researchers are doing this study to see if this new nonmyeloablative method of low dose radiation and low dose chemotherapy given before transplant and immune suppressive drugs after transplant will help make the transplant safer and also cure acute lymphocytic leukemia

COMPLETED
Tacrolimus and Methotrexate With or Without Sirolimus in Preventing Graft-Versus-Host Disease in Young Patients Undergoing Donor Stem Cell Transplant for Acute Lymphoblastic Leukemia in Complete Remission
Description

This randomized phase III trial is studying tacrolimus, methotrexate, and sirolimus to see how well they work compared to tacrolimus and methotrexate in preventing graft-versus-host disease in young patients who are undergoing donor stem cell transplant for intermediate-risk or high-risk acute lymphoblastic leukemia in second complete remission and high risk acute lymphoblastic leukemia in first remission. Giving chemotherapy, such as thiotepa and cyclophosphamide, and total-body irradiation before a donor stem cell transplant helps stop the growth of cancer cells. It also helps stop the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving tacrolimus, methotrexate, and sirolimus after the transplant may stop this from happening. It is not yet known whether tacrolimus and methotrexate are more effective with or without sirolimus in preventing graft-versus-host disease.

WITHDRAWN
Standard Maintenance POMP/D Plus Ixazomib Maintenance Therapy in Adult Patients With Acute Lymphoblastic Leukemia, Lymphoblastic Lymphoma or Mixed Phenotype Acute Leukemia in Complete Remission (CR)
Description

In this phase I study, escalating doses of IXAZOMIB will be combined with the POMP/D regimen.

ACTIVE_NOT_RECRUITING
Blinatumomab in Treating Patients With B-cell Acute Lymphoblastic Leukemia With Minimal Residual Disease
Description

This phase II trial studies how well blinatumomab works in treating patients with B-cell acute lymphoblastic leukemia whose disease is in remission (causes no symptoms or signs) but is still present in a small number of cells in the body (minimal residual disease). Immunotherapy with monoclonal antibodies, such as blinatumomab, may induce changes in the body's immune system and may interfere with the ability of tumor cells to grow and spread.

ACTIVE_NOT_RECRUITING
Total Marrow and Lymphoid Irradiation and Chemotherapy Before Donor Transplant in Treating Patients with Myelodysplastic Syndrome or Acute Leukemia
Description

This phase I trial studies the side effects and best dose of total bone marrow and lymphoid irradiation when given together with chemotherapy before donor stem cell transplant in treating patients with myelodysplastic syndrome or acute leukemia. Total marrow and lymphoid irradiation is a type of radiation therapy that targets bone marrow and blood, where the cancer is, instead of applying radiation to the whole body. Stem cell transplants use high doses of chemotherapy and radiation therapy, such as total marrow and lymphoid irradiation, to kill cancer cells, but these treatments kill normal cells as well. After chemotherapy, healthy cells from a donor are given to the patient to help the patient grow new blood cells.

ACTIVE_NOT_RECRUITING
Chemotherapy, Total Body Irradiation, and Post-Transplant Cyclophosphamide in Reducing Rates of Graft Versus Host Disease in Patients With Hematologic Malignancies Undergoing Donor Stem Cell Transplant
Description

This phase Ib/2 trial studies how well chemotherapy, total body irradiation, and post-transplant cyclophosphamide work in reducing rates of graft versus host disease in patients with hematologic malignancies undergoing a donor stem cell transplant. Drugs used in the chemotherapy, such as fludarabine phosphate and melphalan hydrochloride, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving chemotherapy and total-body irradiation before a donor stem cell transplant helps stop the growth of cells in the bone marrow, including normal blood-forming cells (stem cells) and cancer cells. When the healthy stem cells from a donor are infused into the patient, they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells (called graft versus host disease). Giving cyclophosphamide after the transplant may stop this from happening.

ACTIVE_NOT_RECRUITING
Combination Chemotherapy and Ponatinib Hydrochloride in Treating Patients With Acute Lymphoblastic Leukemia
Description

This phase II trial studies the side effects and how well combination chemotherapy and ponatinib hydrochloride work in treating patients with acute lymphoblastic leukemia. Drugs used in chemotherapy, such as cyclophosphamide, vincristine sulfate, doxorubicin hydrochloride, and dexamethasone, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Ponatinib hydrochloride may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving combination chemotherapy and ponatinib hydrochloride may be an effective treatment for acute lymphoblastic leukemia.

COMPLETED
Combination Chemotherapy and Ofatumumab in Treating Patients With Acute Lymphoblastic Leukemia or Lymphoblastic Lymphoma
Description

This phase II trial studies how well combination chemotherapy and ofatumumab work in treating patients with acute lymphoblastic leukemia or lymphoblastic lymphoma. Drugs used in chemotherapy, such as cyclophosphamide, vincristine sulfate, doxorubicin hydrochloride, and dexamethasone, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Immunotherapy with ofatumumab, may induce changes in body's immune system and may interfere with the ability of tumor cells to grow and spread. Giving combination chemotherapy together with ofatumumab may be an effective treatment for acute lymphoblastic leukemia or lymphoblastic lymphoma.

TERMINATED
Donor Peripheral Blood Stem Cell Transplant in Treating Patients With Hematologic Malignancies
Description

This phase II trial studies how well donor peripheral blood stem cell (PBSC) transplant works in treating patients with hematologic malignancies. Cyclophosphamide when added to tacrolimus and mycophenolate mofetil is safe and effective in preventing severe graft-versus-host disease (GVHD) in most patients with hematologic malignancies undergoing transplantation of bone marrow from half-matched (haploidentical) donors. This approach has extended the transplant option to patients who do not have matched related or unrelated donors, especially for patients from ethnic minority groups. The graft contains cells of the donor's immune system which potentially can recognize and destroy the patient's cancer cells (graft-versus-tumor effect). Rejection of the donor's cells by the patient's own immune system is prevented by giving low doses of chemotherapy (fludarabine phosphate and cyclophosphamide) and total-body irradiation before transplant. Patients can experience low blood cell counts after transplant. Using stem cells and immune cells collected from the donor's circulating blood may result in quicker recovery of blood counts and may be more effective in treating the patient's disease than using bone marrow.

COMPLETED
WT1 Vaccine Treatment of Patients in Remission From Acute Myeloid Leukemia (AML) or Acute Lymphoblastic Leukemia (ALL)
Description

This trial will assess the safety and efficacy of vaccination with galinpepimut-S (GPS), a WT1 peptide vaccine, in patients who are in complete remission from leukemia. Participants will receive vaccinations with GPS every 2 weeks for 10 weeks (a total of 6 vaccinations). In the absence of disease recurrence at Week 12 and if clinically stable after the first 6 vaccinations, participants may continue to receive up to six more vaccinations every month.

COMPLETED
Safety and Efficacy of POL6326 for Mobilization/Transplant of Sibling Donor in Patients With Hematologic Malignancies
Description

Determine the safety and tolerability of POL6326 when used as a single mobilization agent.

COMPLETED
Cord Blood Fucosylation to Enhance Homing and Engraftment in Patients With Hematologic Malignancies
Description

The goal of this clinical research study is to learn if it is safe and feasible to transplant changed cord blood for patients with leukemia or lymphoma. Researchers also want to learn if this can help to control the disease. The cord blood will be changed to make use of sugar that is found in small amounts in blood cells. It plays a role in signaling where in the body the transplanted cells should go to. Adding more sugars to the cord blood cells in the laboratory is designed to help the cord blood cells find their way faster to the bone marrow. This may help your blood counts to recover faster. This process is called fucosylation. Anti-thymocyte globulin (ATG) is a protein that removes immune cells that cause damage to the body. Clofarabine is designed to interfere with the growth and development of cancer cells. Fludarabine is designed to interfere with the DNA (genetic material) of cancer cells, which may cause the cancer cells to die. This chemotherapy is also designed to block your body's ability to reject the donor's bone marrow cells. Melphalan and busulfan are designed to bind to the DNA of cells, which may cause cancer cells to die. Mycophenolate mofetil (MMF) and tacrolimus are designed to block the donor cells from growing and spreading in a way that could cause graft versus host disease (GVHD -- a condition in which transplanted tissue attacks the recipient's body). This may help to prevent GVHD. Rituximab is designed to attach to cancer cells, which may cause them to die.